Publications

Publications by categories in reversed chronological order. generated by jekyll-scholar.

See also my Google Scholar and Github pages. You can also view them by choosing the category below.

All Selected papers Optimization Image processing Machine learning

2024

  1. Preprint
    A Guide to Stochastic Optimisation for Large-Scale Inverse Problems
    Matthias J. EhrhardtZeljko KeretaJingwei Liang, and Junqi Tang
    arXiv preprint arXiv:2406.06342, 2024
  2. Journal
    Federated Primal-Dual Fixed Point Algorithm
    Ya-Nan ZhuJingwei Liang, and Xiaoqun Zhang
    SIAM Journal on Mathematics of Data Science, accepted, 2024
  3. Journal
    A Scalable Sphere-Constrained Magnitude-Sparse SAR Imaging
    Ming Jiang, Jiaxuan Qu , Jinshan Ding, and Jingwei Liang
    Journal of Nonlinear & Variational Analysis, 2024

2023

  1. Journal
    A Distance Function Based Cascaded Neural Network for Accurate Polyps Segmentation and Classification
    Yuanhong Jiang, Jingwei Liang, Weiqi Xiong , Qiwei Li , Yijue Zhang, Tao Chen, and 1 more author
    Inverse Problems and Imaging, 2023
  2. Conference
    Robust Graph Representation Learning for Local Corruption Recovery
    Bingxin Zhou , Yuanhong Jiang, Yuguang WangJingwei Liang, Junbin Gao, Shirui Pan, and 1 more author
    In Proceedings of the ACM Web Conference, 2023

2022

  1. Journal
    Partial Smoothness and Constant Rank
    Adrian S. LewisJingwei Liang, and Tonghua Tian
    SIAM Journal on Optimization, 2022
  2. Journal
    Variable Screening for Sparse Online Regression
    Jingwei Liang, and Clarice Poon
    Journal of Computational and Graphical Statistics, 2022
  3. Journal
    On Biased Stochastic Gradient Estimation
    Derek DriggsJingwei Liang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022
  4. Journal
    TFPNP: Tuning-free Plug-and-Play Proximal Algorithms with Applications to Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Hua Huang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022
  5. Journal
    Improving “Fast Iterative Shrinkage-Thresholding Algorithm”: Faster, Smarter, and Greedier
    Jingwei Liang, Tao Luo, and Carola-Bibiane Schönlieb
    SIAM Journal on Scientific Computing, 2022

2021

  1. Journal
    A Stochastic Alternating Direction Method of Multipliers for Non-smooth and Non-convex Optimization
    Fengmiao Bian, Jingwei Liang, and Xiaoqun Zhang
    Inverse Problems, 2021
  2. Journal
    A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex Optimization
    SIAM Journal on Imaging Sciences, 2021
  3. Preprint
    An Adaptive Rank Continuation Algorithm for General Weighted Low-rank Recovery
    Aritra DuttaJingwei Liang , and Xin Li
    arXiv preprint arXiv:2101.00749, 2021

2020

  1. Conference
    Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua Huang
    In International Conference on Machine Learning (ICML), 2020
  2. Preprint
    Geometry of First-Order Methods and Adaptive Acceleration
    Clarice Poon, and Jingwei Liang
    arXiv preprint arXiv:2003.03910, 2020
  3. Journal
    The Fun is Finite: Douglas-Rachford and Sudoku Puzzle–Finite Termination and Local Linear Convergence
    Robert Tovey, and Jingwei Liang
    Journal of Applied and Numerical Optimization, 2020
  4. Journal
    Best Pair Formulation & Accelerated Scheme for Non-convex Principal Component Pursuit
    Aritra Dutta, Filip Hanzely, Jingwei Liang, and Peter Richtárik
    IEEE Transactions on Signal Processing, 2020

2019

  1. Conference
    Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration
    Clarice Poon, and Jingwei Liang
    In Advances in Neural Information Processing Systems (NeurIPS), 2019
  2. Journal
    Convergence Rates of Forward–Douglas–Rachford Splitting Method
    Cesare MolinariJingwei Liang, and Jalal Fadili
    Journal of Optimization Theory and Applications, 2019

2018

  1. Conference
    Local Convergence Properties of SAGA/Prox-SVRG and Acceleration
    Clarice PoonJingwei Liang, and Carola-Bibiane Schönlieb
    In International Conference on Machine Learning (ICML), 2018
  2. Journal
    Local Linear Convergence Analysis of Primal–Dual Splitting Methods
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Optimization, 2018

2017

  1. Journal
    Activity Identification and Local Linear Convergence of Forward–Backward-type Methods
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    SIAM Journal on Optimization, 2017
  2. Journal
    Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Journal of Optimization Theory and Applications, 2017

2016

  1. Thesis
    Convergence Rates of First-Order Operator Splitting Methods
    Jingwei Liang
    Normandie Université; GREYC CNRS UMR 6072, 2016
  2. Journal
    Convergence Rates with Inexact Non-expansive Operators
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Mathematical Programming, 2016
  3. Conference
    A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    In Advances in Neural Information Processing Systems (NeurIPS), 2016

2015

  1. Conference
    Activity Identification and Local Linear Convergence of Douglas–Rachford/ADMM under Partial Smoothness
    Jingwei LiangJalal FadiliGabriel Peyré, and Russell Luke
    In International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 2015
  2. Journal
    Retinex by Higher Order Total Variation L1 Decomposition
    Jingwei Liang, and Xiaoqun Zhang
    Journal of Mathematical Imaging and Vision, 2015

2014

  1. Conference
    Local Linear Convergence of Forward–Backward under Partial Smoothness
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Advances in Neural Information Processing Systems (NeurIPS), 2014
  2. Journal
    Seismic Data Restoration via Data-driven Tight Frame
    Jingwei LiangJianwei Ma, and Xiaoqun Zhang
    Geophysics, 2014

2013

  1. Journal
    Wavelet Frame Based Color Image Demosaicing
    Jingwei LiangJia LiZuowei Shen, and Xiaoqun Zhang
    Inverse Problems and Imaging, 2013

2024

  1. Preprint
    A Guide to Stochastic Optimisation for Large-Scale Inverse Problems
    Matthias J. EhrhardtZeljko KeretaJingwei Liang, and Junqi Tang
    arXiv preprint arXiv:2406.06342, 2024

2022

  1. Journal
    Partial Smoothness and Constant Rank
    Adrian S. LewisJingwei Liang, and Tonghua Tian
    SIAM Journal on Optimization, 2022
  2. Journal
    On Biased Stochastic Gradient Estimation
    Derek DriggsJingwei Liang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022
  3. Journal
    Improving “Fast Iterative Shrinkage-Thresholding Algorithm”: Faster, Smarter, and Greedier
    Jingwei Liang, Tao Luo, and Carola-Bibiane Schönlieb
    SIAM Journal on Scientific Computing, 2022

2021

  1. Journal
    A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex Optimization
    SIAM Journal on Imaging Sciences, 2021

2020

  1. Conference
    Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua Huang
    In International Conference on Machine Learning (ICML), 2020

2019

  1. Conference
    Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration
    Clarice Poon, and Jingwei Liang
    In Advances in Neural Information Processing Systems (NeurIPS), 2019

2018

  1. Conference
    Local Convergence Properties of SAGA/Prox-SVRG and Acceleration
    Clarice PoonJingwei Liang, and Carola-Bibiane Schönlieb
    In International Conference on Machine Learning (ICML), 2018

2017

  1. Journal
    Activity Identification and Local Linear Convergence of Forward–Backward-type Methods
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    SIAM Journal on Optimization, 2017

2016

  1. Thesis
    Convergence Rates of First-Order Operator Splitting Methods
    Jingwei Liang
    Normandie Université; GREYC CNRS UMR 6072, 2016
  2. Journal
    Convergence Rates with Inexact Non-expansive Operators
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Mathematical Programming, 2016
  3. Conference
    A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    In Advances in Neural Information Processing Systems (NeurIPS), 2016

2015

  1. Journal
    Retinex by Higher Order Total Variation L1 Decomposition
    Jingwei Liang, and Xiaoqun Zhang
    Journal of Mathematical Imaging and Vision, 2015

2024

  1. Preprint
    A Guide to Stochastic Optimisation for Large-Scale Inverse Problems
    Matthias J. EhrhardtZeljko KeretaJingwei Liang, and Junqi Tang
    arXiv preprint arXiv:2406.06342, 2024
  2. Journal
    Federated Primal-Dual Fixed Point Algorithm
    Ya-Nan ZhuJingwei Liang, and Xiaoqun Zhang
    SIAM Journal on Mathematics of Data Science, accepted, 2024

2022

  1. Journal
    Partial Smoothness and Constant Rank
    Adrian S. LewisJingwei Liang, and Tonghua Tian
    SIAM Journal on Optimization, 2022
  2. Journal
    Variable Screening for Sparse Online Regression
    Jingwei Liang, and Clarice Poon
    Journal of Computational and Graphical Statistics, 2022
  3. Journal
    On Biased Stochastic Gradient Estimation
    Derek DriggsJingwei Liang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022
  4. Journal
    Improving “Fast Iterative Shrinkage-Thresholding Algorithm”: Faster, Smarter, and Greedier
    Jingwei Liang, Tao Luo, and Carola-Bibiane Schönlieb
    SIAM Journal on Scientific Computing, 2022

2021

  1. Journal
    A Stochastic Alternating Direction Method of Multipliers for Non-smooth and Non-convex Optimization
    Fengmiao Bian, Jingwei Liang, and Xiaoqun Zhang
    Inverse Problems, 2021
  2. Journal
    A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex Optimization
    SIAM Journal on Imaging Sciences, 2021
  3. Preprint
    An Adaptive Rank Continuation Algorithm for General Weighted Low-rank Recovery
    Aritra DuttaJingwei Liang , and Xin Li
    arXiv preprint arXiv:2101.00749, 2021

2020

  1. Preprint
    Geometry of First-Order Methods and Adaptive Acceleration
    Clarice Poon, and Jingwei Liang
    arXiv preprint arXiv:2003.03910, 2020
  2. Journal
    The Fun is Finite: Douglas-Rachford and Sudoku Puzzle–Finite Termination and Local Linear Convergence
    Robert Tovey, and Jingwei Liang
    Journal of Applied and Numerical Optimization, 2020
  3. Journal
    Best Pair Formulation & Accelerated Scheme for Non-convex Principal Component Pursuit
    Aritra Dutta, Filip Hanzely, Jingwei Liang, and Peter Richtárik
    IEEE Transactions on Signal Processing, 2020

2019

  1. Conference
    Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration
    Clarice Poon, and Jingwei Liang
    In Advances in Neural Information Processing Systems (NeurIPS), 2019
  2. Journal
    Convergence Rates of Forward–Douglas–Rachford Splitting Method
    Cesare MolinariJingwei Liang, and Jalal Fadili
    Journal of Optimization Theory and Applications, 2019

2018

  1. Conference
    Local Convergence Properties of SAGA/Prox-SVRG and Acceleration
    Clarice PoonJingwei Liang, and Carola-Bibiane Schönlieb
    In International Conference on Machine Learning (ICML), 2018
  2. Journal
    Local Linear Convergence Analysis of Primal–Dual Splitting Methods
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Optimization, 2018

2017

  1. Journal
    Activity Identification and Local Linear Convergence of Forward–Backward-type Methods
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    SIAM Journal on Optimization, 2017
  2. Journal
    Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Journal of Optimization Theory and Applications, 2017

2016

  1. Thesis
    Convergence Rates of First-Order Operator Splitting Methods
    Jingwei Liang
    Normandie Université; GREYC CNRS UMR 6072, 2016
  2. Journal
    Convergence Rates with Inexact Non-expansive Operators
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Mathematical Programming, 2016
  3. Conference
    A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    In Advances in Neural Information Processing Systems (NeurIPS), 2016

2015

  1. Conference
    Activity Identification and Local Linear Convergence of Douglas–Rachford/ADMM under Partial Smoothness
    Jingwei LiangJalal FadiliGabriel Peyré, and Russell Luke
    In International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 2015

2014

  1. Conference
    Local Linear Convergence of Forward–Backward under Partial Smoothness
    Jingwei LiangJalal Fadili, and Gabriel Peyré
    Advances in Neural Information Processing Systems (NeurIPS), 2014

2024

  1. Preprint
    A Guide to Stochastic Optimisation for Large-Scale Inverse Problems
    Matthias J. EhrhardtZeljko KeretaJingwei Liang, and Junqi Tang
    arXiv preprint arXiv:2406.06342, 2024
  2. Journal
    A Scalable Sphere-Constrained Magnitude-Sparse SAR Imaging
    Ming Jiang, Jiaxuan Qu , Jinshan Ding, and Jingwei Liang
    Journal of Nonlinear & Variational Analysis, 2024

2022

  1. Journal
    TFPNP: Tuning-free Plug-and-Play Proximal Algorithms with Applications to Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Hua Huang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022
  2. Journal
    Improving “Fast Iterative Shrinkage-Thresholding Algorithm”: Faster, Smarter, and Greedier
    Jingwei Liang, Tao Luo, and Carola-Bibiane Schönlieb
    SIAM Journal on Scientific Computing, 2022

2021

  1. Journal
    A Stochastic Alternating Direction Method of Multipliers for Non-smooth and Non-convex Optimization
    Fengmiao Bian, Jingwei Liang, and Xiaoqun Zhang
    Inverse Problems, 2021
  2. Journal
    A Stochastic Proximal Alternating Minimization for Nonsmooth and Nonconvex Optimization
    SIAM Journal on Imaging Sciences, 2021

2020

  1. Conference
    Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua Huang
    In International Conference on Machine Learning (ICML), 2020

2019

  1. Conference
    Trajectory of Alternating Direction Method of Multipliers and Adaptive Acceleration
    Clarice Poon, and Jingwei Liang
    In Advances in Neural Information Processing Systems (NeurIPS), 2019

2015

  1. Journal
    Retinex by Higher Order Total Variation L1 Decomposition
    Jingwei Liang, and Xiaoqun Zhang
    Journal of Mathematical Imaging and Vision, 2015

2014

  1. Journal
    Seismic Data Restoration via Data-driven Tight Frame
    Jingwei LiangJianwei Ma, and Xiaoqun Zhang
    Geophysics, 2014

2013

  1. Journal
    Wavelet Frame Based Color Image Demosaicing
    Jingwei LiangJia LiZuowei Shen, and Xiaoqun Zhang
    Inverse Problems and Imaging, 2013

2024

  1. Journal
    Federated Primal-Dual Fixed Point Algorithm
    Ya-Nan ZhuJingwei Liang, and Xiaoqun Zhang
    SIAM Journal on Mathematics of Data Science, accepted, 2024

2023

  1. Journal
    A Distance Function Based Cascaded Neural Network for Accurate Polyps Segmentation and Classification
    Yuanhong Jiang, Jingwei Liang, Weiqi Xiong , Qiwei Li , Yijue Zhang, Tao Chen, and 1 more author
    Inverse Problems and Imaging, 2023
  2. Conference
    Robust Graph Representation Learning for Local Corruption Recovery
    Bingxin Zhou , Yuanhong Jiang, Yuguang WangJingwei Liang, Junbin Gao, Shirui Pan, and 1 more author
    In Proceedings of the ACM Web Conference, 2023

2022

  1. Journal
    Variable Screening for Sparse Online Regression
    Jingwei Liang, and Clarice Poon
    Journal of Computational and Graphical Statistics, 2022
  2. Journal
    On Biased Stochastic Gradient Estimation
    Derek DriggsJingwei Liang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022
  3. Journal
    TFPNP: Tuning-free Plug-and-Play Proximal Algorithms with Applications to Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Hua Huang, and Carola-Bibiane Schönlieb
    Journal of Machine Learning Research, 2022

2020

  1. Conference
    Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
    Kaixuan Wei, Angelica Aviles-RiveroJingwei Liang, Ying Fu, Carola-Bibiane Schönlieb, and Hua Huang
    In International Conference on Machine Learning (ICML), 2020

2018

  1. Conference
    Local Convergence Properties of SAGA/Prox-SVRG and Acceleration
    Clarice PoonJingwei Liang, and Carola-Bibiane Schönlieb
    In International Conference on Machine Learning (ICML), 2018