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Previously

TV based image processing Let p ∈ {1, 2},

min
xxx∈Rm×n

µ||∇xxx||1 +
1

2
||fff −Fxxx||p

p
.
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TV based image processing Let p ∈ {1, 2},

min
xxx∈Rm×n

µ||∇xxx||1 +
1

2
||fff −Fxxx||p

p
.

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + R(KKKxxx)

}
,

with

F ∈ Γ0(Rn), R ∈ Γ0(Rm)

KKK : Rn → Rm is bounded linear.
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Conjugate

Definition - Conjugate

Let R : Rn →]−∞,+∞], the conjugate of R is defined by

R∗(uuu)
def
= sup

xxx∈Rn

(〈xxx | uuu〉 − R(xxx)).

Biconjugate R∗∗ = (R∗)∗.

Also called Fenchel conjugate,

Legendre transform, or

Legendre-Fenchel transform.

gra(R)

gra(〈·|v〉)

R∗(v)
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Conjugate

Definition - Conjugate

Let R : Rn →]−∞,+∞], the conjugate of R is defined by

R∗(uuu)
def
= sup

xxx∈Rn

(〈xxx | uuu〉 − R(xxx)).

Example - Support function

Let S ⊆ Rn be a non-empty convex set, the support

function of S is defined by

σS(uuu)
def
= sup

xxx∈S

〈xxx | uuu〉 = ι∗S (uuu).

Let S be a linear subspace of Rn, then

σS(uuu) = ιS⊥(uuu).

S

S⊥

Conjugation 3/17



Conjugate

Definition - Conjugate

Let R : Rn →]−∞,+∞], the conjugate of R is defined by

R∗(uuu)
def
= sup

xxx∈Rn

(〈xxx | uuu〉 − R(xxx)).

Example - `2-norm square

Let R = 1
2 ||xxx||
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Let R : Rn →]−∞,+∞], the conjugate of R is defined by

R∗(uuu)
def
= sup

xxx∈Rn

(〈xxx | uuu〉 − R(xxx)).

Example - `2-norm square

Let R = 1
2 ||xxx||

2
,

R∗(uuu) =
1

2
||uuu||2.

Self-conjugacy

Definition - Dual norm

Let || · || be a norm defined on Rn. Its dual norm,

denoted by || · ||∗, is defined as

||uuu||∗ = sup
{
〈uuu | xxx〉 : ||xxx|| ≤ 1

}
.

Example - Conjugate of norm

Let R = ||xxx|| be a norm with dual norm || · ||∗. Then

R∗(uuu) =

{
0 ||uuu||∗ ≤ 1,

+∞ o.w.
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Properties

Convexity of conjugate R∗ is closed and convex.

Fenchel–Young inequality Let R : Rn →]−∞,+∞] be proper. Then

R(xxx) + R∗(uuu) ≥ 〈xxx | uuu〉.

Let F, R be functions from Rn to [−∞,+∞]. Then

R∗∗ ≤ R.

F ≤ R =⇒
[
F∗ ≥ R∗ and F∗∗ ≤ R∗∗

]
.

Let R : Rn →]−∞,+∞]. Then

∀α > 0,
(αR)∗ = αR∗(·/α) and

(
αR(·/α)

)∗
= αR∗.

Let KKK : Rn → Rn be bijective. Then

(R ◦ KKK)∗ = R∗ ◦ KKK∗−1.
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The Fenchel–Moreau theorem

Theorem - Fenchel–Moreau

Let R : Rn →]−∞,+∞] be proper. Then R is closed and convex if and only if R = R∗∗. In this

case, R∗ is proper as well.

Corollary

Let R ∈ Γ0(Rn), then R∗ ∈ Γ0(Rn) and R∗∗ = R.
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Moreau’s decomposition

Theorem - Moreau’s decomposition

Let R ∈ Γ0(Rn) be continuous and convex, let γ > 0. Then the following hold

Moreau’s identify given any xxx ∈ Rn,

xxx = proxγR(xxx) + γ proxR∗/γ

(
xxx

γ

)
.

For any xxx ∈ Rn,

R
(
proxγR(xxx)

)
+ R∗

(
proxR∗/γ(xxx/γ)

)
= 〈proxγR(xxx) | proxR∗/γ(xxx/γ)〉.

S

S⊥

x

PS(x)

PS⊥(x)
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Calculus

Theorem - Subdifferential and conjugation

Let R ∈ Γ0(Rn), let xxx ∈ Rn and vvv ∈ Rn. Then the following are equivalent

(xxx,uuu) ∈ gra(∂R).
R(xxx) + R∗(uuu) = 〈xxx | uuu〉.
(uuu,xxx) ∈ gra(∂R∗).

When R ∈ Γ0(Rn), ∂R∗ = (∂R)−1.

Theorem - Strong convexity and conjugation

Let F : Rn → R be continuous and convex, let β > 0. Then the following are equivalent

∇F is 1/β-Lipschitz continuous.

F∗ is β-strongly convex.

Conjugation 7/17



Duality

Fenchel-Rockafellar duality



Fenchel-Rockafellar duality

Proposition - Duality inequality

Let F : Rn →]−∞,+∞] be proper and R : Rm →]−∞,+∞] be proper, let KKK : Rn → Rm be

bounded linear. Then

(∀xxx ∈ Rn)(∀uuu ∈ Rm) F(xxx) + R(KKKxxx) ≥ −F∗(−KKK∗uuu)− R∗(uuu).

and

inf(F + R ◦ KKK)(Rn) ≥ − inf(F∗ ◦ −KKK∗ + R∗)(Rn).

Duality 8/17



Fenchel-Rockafellar duality

Definition - Fenchel-Rockafellar duality

Let F : Rn →]−∞,+∞], R : Rm →]−∞,+∞] and KKK : Rn → Rm be bounded linear. The

primal problem associated with the composite function F + R ◦ KKK is

min
xxx∈Rn

F(xxx) + R(KKKxxx), (P)

its dual problem is

min
uuu∈Rm

F∗(−KKK∗uuu) + R∗(uuu). (D )

The primal and dual optimal values are

µ = inf(F + R ◦ KKK)(Rn) and µ∗ = inf(F∗ ◦ −KKK∗ + R∗)(Rm)

and the duality gap is

GF,R,KKK =

{
0 : if µ = −µ∗ ∈

{
−∞,+∞

}
,

µ+ µ∗ : o.w.
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Fenchel-Rockafellar duality

Definition - Duality gap

Let F : Rn →]−∞,+∞] and R : Rm →]−∞,+∞] be proper, let KKK : Rn → Rm be bounded

linear. Set

µ = inf(F + R ◦ KKK)(Rn) and µ∗ = inf(F∗ ◦ −KKK∗ + R∗)(Rm).

Then the following hold

µ ≥ −µ∗.

GF,R,KKK ∈ [0,+∞].

µ = −µ∗ ⇐⇒ GF,R,KKK = 0.

Duality 8/17



Fenchel-Rockafellar duality

Proposition - Strong duality

Let F ∈ Γ0(Rn) and R ∈ Γ0(Rm) such that

ri
(
KKKdom(F)

)
∩ ri

(
dom(R)

)
6= ∅.

Then

inf(F + R ◦ KKK)(Rn) = −min(F∗ ◦ −KKK∗ + R∗)(Rm).

Duality 8/17



Primal-Dual splitting method

Algorithm, and convergence



Saddle-point problem

Proposition - Saddle-point problem

Let F : Rn →]−∞,+∞] and R : Rm →]−∞,+∞] be proper, let KKK : Rn → Rm be bounded

linear such that dom(R) ∩ KKKdom(F) 6= ∅. Then the following hold

The primal problem is

min
xxx∈Rn

F(xxx) + R(KKKxxx). (P)

The dual problem is

min
uuu∈Rm

F∗(−KKK∗uuu) + R∗(uuu). (D )

The saddle-point problem is

L (xxx;uuu) = min
xxx∈dom(F)

max
uuu∈dom(R∗)

F(xxx) + 〈KKKxxx | uuu〉 − R∗(uuu).

Suppose the optimal values µ of (P) and µ∗ of (D ) satisfy µ = −µ∗ ∈ R, let
(xxx?,uuu?) ∈ dom(F)× dom(R∗). Then (xxx?,uuu?) is a saddle point of L (xxx;uuu) if and only if

−KKK∗uuu? ∈ ∂F(xxx?) and KKKxxx? ∈ ∂R∗(uuu?).
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A Primal–Dual splitting method

Let

L = ||K|| def
= max

{
||KKKxxx|| : xxx ∈ Rn such that ||xxx|| ≤ 1

}
.

Algorithm - Primal–Dual splitting method [Chambolle & Pock ’11]

initial: (xxx(0),uuu(0)) ∈ dom(F)× dom(R) and xxx(0) = xxx(0); θ ∈ [0, 1] and σ, τ > 0 such that

στL2 ≤ 1.

repeat:

1. Dual update: uuu(k+1) = proxσR∗(uuu
(k) + σKKKxxx(k))

2. Primal update: xxx(k+1) = proxτF(xxx
(k) − τKKK∗uuu(k+1))

3. Extrapolation: xxx(k+1) = xxx(k+1) + θ(xxx(k+1) − xxx(k))

until: stopping criterion is satisfied.
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Fixed-point characterization

Consider the following order of iteration

xxx(k+1) = proxτF(xxx
(k) − τKKK∗uuu(k))

xxx(k+1) = xxx(k+1) + θ(xxx(k+1) − xxx(k))

uuu(k+1) = proxσR∗(uuu
(k) + σKKKxxx(k+1))
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τ
− KKK∗(uuu(k) − uuu(k+1)) ∈ ∂F(xxx(k+1)) + KKK∗uuu(k+1)

uuu(k) − uuu(k+1)

σ
− θKKK(xxx(k) − xxx(k+1)) ∈ ∂R∗(uuu(k+1))− KKKxxx(k+1)
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Fixed-point characterization

Consider the following order of iteration

xxx(k+1) = proxτF(xxx
(k) − τKKK∗uuu(k))

xxx(k+1) = xxx(k+1) + θ(xxx(k+1) − xxx(k))

uuu(k+1) = proxσR∗(uuu
(k) + σKKKxxx(k+1))

which further leads to

xxx(k) − xxx(k+1)

τ
− KKK∗(uuu(k) − uuu(k+1)) ∈ ∂F(xxx(k+1)) + KKK∗uuu(k+1)

uuu(k) − uuu(k+1)

σ
− θKKK(xxx(k) − xxx(k+1)) ∈ ∂R∗(uuu(k+1))− KKKxxx(k+1)

Rearrange terms [
IIIdddn/τ −KKK∗

−θKKK IIIdddm/σ

](
xxx(k) − xxx(k+1)

uuu(k) − uuu(k+1)

)
∈
[
∂F KKK∗

−KKK ∂R∗

](
xxx(k+1)

uuu(k+1)

)
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xxx(k+1) = xxx(k+1) + θ(xxx(k+1) − xxx(k))

uuu(k+1) = proxσR∗(uuu
(k) + σKKKxxx(k+1))

Lastly (
xxx(k+1)

uuu(k+1)

)
=

([
IIIdddn/τ −KKK∗

−θKKK IIIdddm/σ

]
+

[
∂F KKK∗

−KKK ∂R∗

])−1 [
IIIdddn/τ −KKK∗

−θKKK IIIdddm/σ

](
xxx(k)
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Fixed-point characterization

Consider the following order of iteration

xxx(k+1) = proxτF(xxx
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uuu(k+1)

)
=

([
IIIdddn/τ −KKK∗

−θKKK IIIdddm/σ

]
+

[
∂F KKK∗

−KKK ∂R∗

])−1 [
IIIdddn/τ −KKK∗

−θKKK IIIdddm/σ

](
xxx(k)

uuu(k)

)
Define the following operator: let θ = 1,

zzz(k) =

(
xxx(k)

uuu(k)

)
∈ Rm+n, A =

[
∂F KKK∗

−KKK ∂R∗

]
and V =

[
IIIdddn/τ −KKK∗

−KKK IIIdddm/σ

]
.

Primal-Dual splitting method 11/17



Primal-Dual splitting as PPA

Proposition - Properties ofA and V
The following hold

A is maximal monotone.

Let στ ||KKK||2 < 1, then V is positive definite.

The simplified characterization

zzz(k+1) = (V +A)−1Vzzz(k) =
(
V(IIIddd+ V−1A)

)−1Vzzz(k)

= (IIIddd+ V−1A)−1zzz(k)

Primal-Dual splitting method 12/17



Primal-Dual splitting as PPA

Proposition - Properties ofA and V
The following hold

A is maximal monotone.

Let στ ||KKK||2 < 1, then V is positive definite.

The simplified characterization

zzz(k+1) = (V +A)−1Vzzz(k) =
(
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= (IIIddd+ V−1A)−1zzz(k)

Proposition - Monotonicity of V−1A
LetA : Rn ⇒ Rn be maximally monotone, let V ∈ Rn×n be symmetric and positive definite. Let

Rn
V be the space obtained by endowing Rn with the scalar product

(xxx,yyy) 7→ 〈xxx | yyy〉Rn
V
= 〈Vxxx | yyy〉.

Then V−1A : Rn
V ⇒ Rn

V is maximally monotone.
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Proposition - Properties ofA and V
The following hold

A is maximal monotone.

Let στ ||KKK||2 < 1, then V is positive definite.

The simplified characterization

zzz(k+1) = (V +A)−1Vzzz(k) =
(
V(IIIddd+ V−1A)

)−1Vzzz(k)

= (IIIddd+ V−1A)−1zzz(k)

Proposition - Primal-Dual splitting as PPA

Under the previous setting, V−1A : Rm+n
V ⇒ Rm+n

V is maximally monotone, and the Primal-Dual

splitting iteration is equivalent to the proximal point algorithm for solving

find zzz ∈ Rm+n such that 000 ∈ V−1A(zzz).
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Convergence

Theorem - Convergence with constant step-size

For Primal-Dual splitting method, let R ∈ Γ0(Rm), F ∈ Γ0(Rn) and KKK : Rn → Rm be bounded

linear. Let θ = 1, and σ, τ > 0 be such that

στ ||KKK||2 < 1.

Then {(xxx(k),uuu(k))}k∈N converges to a saddle point (xxx?,uuu?) of L (xxx;uuu).
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linear. Let θ = 1, and σ, τ > 0 be such that

στ ||KKK||2 < 1.

Then {(xxx(k),uuu(k))}k∈N converges to a saddle point (xxx?,uuu?) of L (xxx;uuu).

Theorem - Convergence speed

With the above convergence result,

Sequence

||zzz(k) − zzz(k−1)|| = o
(
1/
√
k
)
.

Duality gap: let

x̃xx(K) =
1

K

∑K

k=1
xxx(k) and ũuu(K) =

1

K

∑K

k=1
uuu(k).

Then (F + R ◦ KKK)(x̃xx(K))− (F + R ◦ KKK)(xxx?) = O(1/K).
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Variants

Strong convexity, smoothness and three terms



Variants of Chambolle-Pock Primal–Dual splitting method

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + R(KKKxxx)

}
,

with

F ∈ Γ0(Rn) and R ∈ Γ0(Rm).

KKK : Rn → Rm be bounded linear.
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Variants of Chambolle-Pock Primal–Dual splitting method

Extra assumption

One function is strongly convex, e.g. F is α-strongly convex.

Algorithm - Variant 1

initial: (xxx(0),uuu(0)) ∈ dom(F)× dom(R) and xxx(0) = xxx(0); σ0, τ0 > 0 such that

σ0τ0||KKK||2 ≤ 1.

repeat:

1. Dual update: uuu(k+1) = proxσkR
∗(uuu(k) + σkKKKxxx

(k))

2. Primal update: xxx(k+1) = proxτkF
(xxx(k) − τkKKK

∗uuu(k+1))

3. Paras update: θk =
1√

1+2ατk
, τk+1 = θkτk, σk+1 = σk/θk

4. Extrapolation: xxx(k+1) = xxx(k+1) + θk(xxx
(k+1) − xxx(k))

until: stopping criterion is satisfied.
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Variants of Chambolle-Pock Primal–Dual splitting method

Extra assumption

F is α-strongly convex and R∗ is δ-strongly convex.

Algorithm - Variant 2

initial: (xxx(0),uuu(0)) ∈ dom(F)× dom(R) and xxx(0) = xxx(0); Choose µ ≤ 2
√
αδ/||KKK|| and

σ =
µ

2α
, τ =

µ

2δ
and θ ∈

[
1

1+µ , 1
]
.

repeat:

1. Dual update: uuu(k+1) = proxσR∗(uuu
(k) + σKKKxxx(k))

2. Primal update: xxx(k+1) = proxτF(xxx
(k) − τKKK∗uuu(k+1))

3. Extrapolation: xxx(k+1) = xxx(k+1) + θ(xxx(k+1) − xxx(k))

until: stopping criterion is satisfied.
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Primal-Dual fixed-point algorithm

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + R(KKKxxx)

}
,

with

F ∈ C1
L (Rn) and R ∈ Γ0(Rm).

KKK : Rn → Rm be bounded linear.
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Primal-Dual fixed-point algorithm

Algorithm - Primal-Dual fixed-point algorithm

initial: (xxx(0),uuu(0)) ∈ dom(F)× dom(R), 0 < λ < ||KKK||2 and 0 < γ < 2/L.

repeat:

1. Forward update: xxx(k+1/2) = xxx(k) − γ∇F(xxx(k))

2. Dual update: uuu(k+1) =
(
IIIddd− proxγ/λR

)(
KKKxxx(k+1/2) + (IIIddd− λKKKKKK∗)uuu(k)

)
3. Primal update: xxx(k+1) = xxx(k+1/2) − λKKK∗uuu(k+1)

until: stopping criterion is satisfied.
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Primal-Dual fixed-point algorithm

Algorithm - Primal-Dual fixed-point algorithm

initial: (xxx(0),uuu(0)) ∈ dom(F)× dom(R), 0 < λ < ||KKK||2 and 0 < γ < 2/L.

repeat:

1. Forward update: xxx(k+1/2) = xxx(k) − γ∇F(xxx(k))

2. Dual update: uuu(k+1) =
(
IIIddd− proxγ/λR

)(
KKKxxx(k+1/2) + (IIIddd− λKKKKKK∗)uuu(k)

)
3. Primal update: xxx(k+1) = xxx(k+1/2) − λKKK∗uuu(k+1)

until: stopping criterion is satisfied.

Fixed-point characterization(
uuu(k+1)

xxx(k+1)

)
=

[
IIIddd 000

−λKKK∗ IIIddd

] [
IIIddd− proxγ/λR 000

000 IIIddd

] [
IIIddd− λKKKKKK∗ KKK − γKKK∇F

000 IIIddd− γ∇F

](
uuu(k)

xxx(k)

)
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Primal-Dual splitting for three functions

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + G(xxx) + R(KKKxxx)

}
,

with

G ∈ C1
L (Rn), F ∈ Γ0(Rn) and R ∈ Γ0(Rm).

KKK : Rn → Rm be bounded linear.
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Primal-Dual splitting for three functions

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + G(xxx) + R(KKKxxx)

}
,

with

G ∈ C1
L (Rn), F ∈ Γ0(Rn) and R ∈ Γ0(Rm).

KKK : Rn → Rm be bounded linear.

Suppose zer(∂F +∇G+ KKK∗ ◦ ∂R ◦ KKK) is non-empty, and let xxx? ∈ zer(∂F +∇G+ KKK∗ ◦ ∂R ◦ KKK).
Then

000 ∈ ∂F(xxx?) +∇G(xxx?) + KKK∗∂R(KKKxxx?).
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Primal-Dual splitting for three functions

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + G(xxx) + R(KKKxxx)

}
,

with

G ∈ C1
L (Rn), F ∈ Γ0(Rn) and R ∈ Γ0(Rm).

KKK : Rn → Rm be bounded linear.

Suppose zer(∂F +∇G+ KKK∗ ◦ ∂R ◦ KKK) is non-empty, and let xxx? ∈ zer(∂F +∇G+ KKK∗ ◦ ∂R ◦ KKK).
Then

000 ∈ ∂F(xxx?) +∇G(xxx?) + KKK∗∂R(KKKxxx?).

Since ∂R is set-valued, there exists uuu? ∈ ∂R(KKKxxx?) such that

000 ∈ ∂F(xxx?) +∇G(xxx?) + KKK∗uuu? and KKKxxx? ∈ (∂R)−1(uuu?).
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Primal-Dual splitting for three functions

Problem - Non-smooth optimization problem

Consider

min
xxx∈Rn

{
Φ(xxx)

def
= F(xxx) + G(xxx) + R(KKKxxx)

}
,

with

G ∈ C1
L (Rn), F ∈ Γ0(Rn) and R ∈ Γ0(Rm).

KKK : Rn → Rm be bounded linear.

Suppose zer(∂F +∇G+ KKK∗ ◦ ∂R ◦ KKK) is non-empty, and let xxx? ∈ zer(∂F +∇G+ KKK∗ ◦ ∂R ◦ KKK).
Then

000 ∈ ∂F(xxx?) +∇G(xxx?) + KKK∗∂R(KKKxxx?).

find uuu? ∈ Rm such that ∃xxx? ∈ Rn

{
000 ∈ ∂F(xxx?) +∇G(xxx?) + KKK∗uuu?,

000 ∈ ∂R∗(uuu?)− KKKxxx?.
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Primal-Dual splitting for three functions

Algorithm - A Primal-Dual splitting method

initial: (xxx(0),uuu(0)) ∈ dom(F + G)× dom(R); σ, τ > 0 and δ = L
2(

1
τ − σ||KKK||2)−1 such that

ρk ∈ [0, δ]
1

τ
− σ||KKK||2 ≥ L

2
and

∑
k∈N

ρk(δ − ρk) = +∞.

repeat:

1. Dual update: uuu(k+1) = proxσR∗(uuu
(k) + σKKKxxx(k)).

2. Primal update: xxx(k+1) = proxτF

(
xxx(k) − τ∇G(xxx(k)) + τKKK∗(2uuu(k+1) − uuu(k))

)
3. Extrapolation: (xxx(k+1),uuu(k+1)) = ρk(xxx

(k+1),uuu(k+1)) + (1− ρk)(xxx
(k),uuu(k))

until: stopping criterion is satisfied.

Variants 16/17



References

H. Bauschke and P. L. Combettes. “Convex Analysis and Monotone Operator Theory in Hilbert Spaces”. Springer,

2011.

A. Chambolle and T. Pock. “A first-order primal-dual algorithm for convex problems with applications to

imaging”. Journal of mathematical imaging and vision 40.1 (2011): 120-145.

P. L. Combettes and J.-C. Pesquet. “Primal-dual splitting algorithm for solving inclusions with mixtures of

composite, Lipschitzian, and parallel-sum type monotone operators”. Set-Valued and variational analysis 20.2

(2012): 307-330.

Peijun Chen, Jianguo Huang, and Xiaoqun Zhang. “A primal–dual fixed point algorithm for convex separable

minimization with applications to image restoration.” Inverse Problems 29.2 (2013): 025011.

Laurent Condat. “A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and

linear composite terms.” Journal of optimization theory and applications 158.2 (2013): 460-479.

Bang Công Vũ. “A splitting algorithm for dual monotone inclusions involving cocoercive operators.” Advances in

Computational Mathematics 38.3 (2013): 667-681.

References 17/17


