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Previously Agzsomll

TV based image processing Let p € {1, 2},
. 1 p
X ~|f = Fx|".
Loin [Vl + S IF = P,
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Previously A=

TV based image processing Let p € {1, 2},
. 1 p
X ~|f = Fx|".
Loin [Vl + S IF = P,

Problem - Non-smooth optimization problem

Consider

min {(x) = F(x) + R(Kx) },

with
mFc Fo(Rn), R € Fo(]Rm)
m K : R" — R™is bounded linear.
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Conjugate Al

TN\T=TsJTU

Definition - Conjugate

LetR : R" —] — oo, +00], the conjugate of R is defined by

def

R*(u) = sup (x| u) = R(x)).

m Biconjugate R** = (R*)*.

m Also called Fenchel conjugate, gra(R)
Legendre transform, or
Legendre-Fenchel transform. gra({:|v))

;R*(V)

Conjugation €0000 © 00000 000 © 3/17



Conjugate

NF=rsotul 1L

Definition - Conjugate

LetR : R" —] — oo, +00], the conjugate of R is defined by

def

R'() 2 sup (x| u) — R())

Example - Support function

Let S C R" be a non-empty convex set, the support
function of S is defined by

os(u) = sup (x | u) = 5 (u).
XeSs

Let S be a linear subspace of R", then

os(u) = 12 (u). sy

Conjugation €0000 © 00000 000 © 3/17



Conjugate Arszsmd ML

Definition - Conjugate

LetR : R" —] — oo, +00], the conjugate of R is defined by

def

R*(u) = sup ({(x|u) = R(x)).

Example - /,-norm square

2
LetR = 1|x|°,

1 2
R (u) = L Jul®.

m Self-conjugacy

Conjugation €0000 © 00000 000 © 3/17



Conjugate

/INT=zsuTul 1L

Definition - Conjugate

LetR : R" —] — oo, +00], the conjugate of R is defined by

def

R'() 2 sup (x| u) — R())

Example - /,-norm square Definition - Dual norm

LetR = %||x||2 , Let || - | be a norm defined on R". Its dual norm,
denoted by | - |, is defined as

Jull, = sup {(u[x) : x| <1}.

1 2
R*(u) = 2 Jul™.

m Self-conjugacy

Conjugation €0000 © 00000 000 © 3/17



Conjugate

NF=rsotul 1L

Definition - Conjugate

LetR : R" —] — oo, +00], the conjugate of R is defined by

def

R'() 2 sup (x| u) — R())

Example - />-norm square Definition - Dual norm

LetR = %||x||2 , Let || - | be a norm defined on R". Its dual norm,
denoted by | - |, is defined as

Jull, = sup {(u[x) : x| <1}.

1 2
R (u) = 2 Jul.

m Self-conjugacy

Example - Conjugate of norm

Let R = |x| be a norm with dual norm | - |,. Then

0 ul|, <1,
R () = { Jul. <

“+00 o.W.

Conjugation €0000 © 00000 000 © 3/17



Properties STNFzsTU

Convexity of conjugate R* is closed and convex.

Conjugation 08000 4/17



Properties =
Convexity of conjugate R* is closed and convex.

Fenchel-Young inequality Let R : R" —] — 0o, +00] be proper. Then
R(x) + R*(u) > (x| u).

Conjugation 0e000 4/17



Properties
Convexity of conjugate R* is closed and convex.

Fenchel-Young inequality Let R : R" —] — 0o, +00] be proper. Then
R(x) + R*(u) > (x| u).

Let F, R be functions from R" to [—oco, +0o¢]. Then

m R*™ <R.
mF<R = [F*>R* and F*™* <R*™].

Conjugation 08000
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Properties
Convexity of conjugate R* is closed and convex.

Fenchel-Young inequality Let R : R" —] — 0o, +00] be proper. Then

R(x) +R*(u) > (x| u).

Let F, R be functions from R" to [—oc0, +00]. Then
m R <R.
mF<R = [F*>R* and F*™* <R*™].

LetR : R" —] — 0o, +00]. Then
m Va > 0,

(aR)" = aR*(-/a)) and (aR(-/a))* = aR™.

m LetK : R" — R" be bijective. Then
(R OK)* _ R* OK*il.

Conjugation 08000
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The Fenchel-Moreau theorem

Theorem - Fenchel-Moreau

Let R : R" —] — 00, +00] be proper. Then R is closed and convex if and only if R = R**. In this
case, R* is proper as well.

Conjugation 00800 © 00000 000 O 5/17



The Fenchel-Moreau theorem

s IMNy=zsotul 1L

Theorem - Fenchel-Moreau

Let R : R" —] — 00, +00] be proper. Then R is closed and convex if and only if R = R**. In this
case, R* is proper as well.

Corollary

Let R € IH(R"), then R* € IH(R") and R** = R.

Conjugation 00800 © 00000 000 © 5/17



Moreau’s decomposition P

Theorem - Moreau’s decomposition

Let R € TH(R") be continuous and convex, let v > 0. Then the following hold

m Moreau’s identify given any x € R",

X = ProxX,g(X) + 7 ProxXg. /., <§)

Conjugation 00080 © 00000 000 O 6/17



Moreau’s decomposition A=l

Theorem - Moreau’s decomposition

Let R € TH(R") be continuous and convex, let v > 0. Then the following hold

m Moreau’s identify given any x € R",

X
X = ProxX,g(X) + 7 ProxXg. /., <;)
m Foranyx € R",

R(prox,g(x)) + R (proxg. (/7)) = (proxg(x) | proxg. /. (x/7)).

Psi(x)

Conjugation 00080 © 00000 000 O 6/17



Calculus rssmul

Theorem - Subdifferential and conjugation

Let R € TH(R"), letx € R" and v € R". Then the following are equivalent
m (x,u) € gra(dR).
m R(x) + R*(u) = (x |u).
® (u,x) € gra(OR").

m When R € [H(R"), OR* = (OR) L.

Theorem - Strong convexity and conjugation

Let F : R" — R be continuous and convex, let 5 > 0. Then the following are equivalent
m VFis 1//-Lipschitz continuous.

m F* is B-strongly convex.

Conjugation 00008 © 00000 000 O 7/17



Duality

Fenchel-Rockafellar duality



Fenchel-Rockafellar duality P

Proposition - Duality inequality

Let F : R" —] — 0o, +00] be proper and R : R™ —] — 00, +00] be proper, letK : R" — R™ be
bounded linear. Then

(VX ER")(Vu € R™)  F(x) + R(KX) > —F*(—K*u) — R*(u).

and
inf(F 4+ RoK)(R") > —inf(F* o —K* 4+ R*)(R").

Duality 00000 ® 00000 000 © 8/17



Fenchel-Rockafellar duality STNFTESITU

Definition - Fenchel-Rockafellar duality

Let F: R" —] — 00, +00], R : R™ —] — 00, +o0] and K : R"” — R™ be bounded linear. The
primal problem associated with the composite function F + R o K is

min F(x) + R(Kx), (2)
XERN
its dual problem is
min F*(—K*u) + R*(u). (2)
ucRrm

The primal and dual optimal values are
w=inf(F+RoK)(R") and p* =inf(F* o —K* +R*)(R™)
and the duality gap is

0: if,u:—,u*e{—oo,+oo},
OrrKk = .
w4+ p o ow.

Duality 00000 ® 00000 000 © 8/17



Fenchel-Rockafellar duality Are=rs

Definition - Duality gap
Let F: R" —] — 00, +00] and R : R™ —] — o0, +-00] be proper, let K : R" — R™ be bounded
linear. Set
p=inf(F+RoK)(R") and p* =inf(F* o —K* + R*)(R™).

Then the following hold

m o> — .

] gF’R’K € [0, +OO]

= —,u* <~ QF’R,K = 0.

Duality 00000 ® 00000 000 O 8/17



Fenchel-Rockafellar duality STNF=ESITU

Proposition - Strong duality
Let F € TH(R") and R € Th(R™) such that
ri(Kdom(F)) Nri(dom(R)) # 0.

Then
inf(F + RoK)(R") = — min(F* o —K* + R*)(R™).

Duality 00000 ® 00000 000 © 8/17



Primal-Dual splitting method

Algorithm, and convergence



Saddle-point problem i

I N Lod U L

Proposition - Saddle-point problem

Let F: R" —] — oo, +oo] and R : R™ —] — 00, +00] be proper, let K : R" — R™ be bounded
linear such that dom(R) N Kdom(F) # (. Then the following hold

m The primal problem is

:{2%’} F(x) + R(Kx). (2)

Primal-Dual splitting method 00000 © 80000 COO O 9/17



Saddle-point problem ~e=ra Ul

I N Lod U L

Proposition - Saddle-point problem

Let F: R" —] — oo, +oo] and R : R™ —] — 00, +00] be proper, let K : R" — R™ be bounded
linear such that dom(R) N Kdom(F) # (. Then the following hold

m The primal problem is

min F(x) + R(Kx). (2)
XeR"
m The dual problem is
m}%n F*(—K*u) 4+ R*(u). (2)
ueRrm

Primal-Dual splitting method 9/17




Saddle-point problem ~e=ra Ul

NI Lod Ul L

Proposition - Saddle-point problem

Let F: R" —] — oo, +oo] and R : R™ —] — 00, +00] be proper, let K : R" — R™ be bounded
linear such that dom(R) N Kdom(F) # (). Then the following hold

m The primal problem is

min F(x) + R(Kx). (2)
XeR"
m The dual problem is
rn]%n F*(—K*u) 4+ R*(u). (2)
ueRrm

m The saddle-point problem is

ZLx;u) = i F Kx — R*(u).
b= o o e () =y

Primal-Dual splitting method 00000 9/17



Saddle-point problem e

NI od iU L

Proposition - Saddle-point problem

Let F: R" —] — oo, +oo] and R : R™ —] — 00, +00] be proper, let K : R" — R™ be bounded
linear such that dom(R) N Kdom(F) # (). Then the following hold

m The primal problem is

min F(x) + R(Kx). (2)
XeR"
m The dual problem is
rn]%n F*(—K*u) 4+ R*(u). (2)
ucRm

m The saddle-point problem is

L(x:u) = i F Kx — R*(u).
(50) = | D ey PO+ {Kx ) — R (W)

m Suppose the optimal values i of (%) and u* of (2) satisfy u = —pu* € R, let
(x*,u*) € dom(F) x dom(R*). Then (x*,u*) is a saddle point of .Z(x; u) if and only if

—K*u* € OF(x*) and Kx* € OR*(u*).

Primal-Dual splitting method 00000 9/17



A Primal-Dual splitting method e —

Let
def

L= [K| = max {|Kx|| : x € R" such that [x| <1}.

Algorithm - Primal-Dual splitting method [

initial: (x(©),u(®)) € dom(F) x dom(R) andX(®) = x(9); 9 € [0, 1] and &, 7 > 0 such that
orl? <1.
repeat:
1. Dual update: u**t1) = prox_p. (u®) 4 okx®))
2. Primal update: xk*1) = prox_(x® — rK*u(k+1))
3. Extrapolation: X(+1) = x(k+1)  g(x(k+1) — x(k))

until: stopping criterion is satisfied.

Primal-Dual splitting method
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Fixed-point characterization

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)
,-((k-‘r].) — x(k+1) 4+ a(x(k—l—l) _x(k))

u**tD = prox, . (u® + okx*+1)

Primal-Dual splitting method co0eco

1/17



Fixed-point characterization sy

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)
,-((k-‘r].) — x(k+1) 4+ Q(X(k_H) _x(k))

u**tD = prox, . (u® + okx*+1)

The property of proximity operator yields
xW — 7y — kD roF(xkHD)
(k1) — y(kt1) g(x(k+1) _x(k))

u 4 okx*FD — gkt ¢ GoR* (kD)

Primal-Dual splitting method co0eco 1/17



Fixed-point characterization R

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)
,-((k-‘r].) — x(k+1) 4+ Q(X(k_H) _x(k))

u**tD = prox, . (u® + okx*+1)

The property of proximity operator yields
xW — 7y — kD roF(xkHD)
XD = x4 g(xkt1) _ x(K))
u 4 okx*FD — gkt ¢ GoR* (kD)
which further leads to
xW — x kD ey gD e roF (x4 rgrukHY

u® — ) 4 ook (x*HD — x0) € gar* (ukHD)) — gRx kD

Primal-Dual splitting method co0eco 1/17



Fixed-point characterization

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)

RHD) — yet1) | giy(kt1) _ (k)

u**tD = prox, . (u® + okx*+1)

The property of proximity operator yields
xW — 7y — kD roF(xkHD)
(k1) — y(kt1) g(x(kH) _x(k))

u® 4 oKxHD — yttD) ¢ GoR* (kD)

which further leads to

X0 —xn K*(u(k) _ u(k+1)) c 3F(x(k+1)) + Kruk+D)
-

u® —uth oK (x) — xk+1)y ¢ gR* (uk+1)) — Kxk+D)

g

Primal-Dual splitting method co0eco
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Fixed-point characterization SN

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)
,-((k-‘r].) — x(k+1) 4+ Q(X(k_H) _x(k))

u**tD = prox, . (u® + okx*+1)

which further leads to

w ~ K (® — uD) € gF (kDY 4 kD
u® —y®r 0K (x) — xk+1)y ¢ gR* (uk+1)) — Kxk+D)

g

d,/r —K* x(K) _ y(k+1) OF K* x(k+1)
[—GK ldm/a} <u(k) u(k+1)> < [_K aR*] <u<k+1)>

Rearrange terms

Primal-Dual splitting method co0eco 1/17



Fixed-point characterization SN

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)
,-((k-‘r].) — x(k+1) 4+ Q(X(k_H) _x(k))

u**tD = prox, . (u® + okx*+1)

Lastly

xUEDN _(Tidy/r K] [OF K i,/ -k ] (x®
ukt) ) T\ 0K ldp /o —K ORrR* —0K Idy/o| \u®

Primal-Dual splitting method 00800 1/17



Fixed-point characterization SN

Consider the following order of iteration
x**D = prox_(x® — 7K*u®)
,-((k-‘r].) — x(k+1) 4+ Q(X(k_H) _x(k))

u**tD = prox, . (u® + okx*+1)

Lastly
xUEDN _(Tidy/r K] [OF K i,/ -k ] (x®
ukt) ] =\ | 0K Idy/o —K OR* —0K Idy/o| \u®
Define the following operator: let § = 1,

(k) OF K* id,/T —K*
(k) _ X m+n _ _ n
z = (u(k)) eR 5 A = |:K aR*:| and V= |: K ,dm/0:| .

Primal-Dual splitting method co0eco 1/17



Primal-Dual splitting as PPA TNESITU

Proposition - Properties of A and V

The following hold

m A is maximal monotone.
m Let o7|K||* < 1, then V is positive definite.

The simplified characterization
2D — (V4 )7 V2® = (Vid + VL A)) T VW
=(id + V1A "1z

Primal-Dual splitting method 00000 © 00080 00O O 12/17



Primal-Dual splitting as PPA e —

Proposition - Properties of A and V

The following hold

m A is maximal monotone.

m Let o7|K||* < 1, then V is positive definite.

The simplified characterization
2D — (V4 )7 V2® = (Vid + VL A)) T VW
=(id + V1A "1z

Proposition - Monotonicity of V' 4

Let A : R" = R" be maximally monotone, let V € R"*" be symmetric and positive definite. Let
RY, be the space obtained by endowing R" with the scalar product

() = x|y, = (Vxy).
Then V™' A : R}, = R, is maximally monotone.

Primal-Dual splitting method
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Primal-Dual splitting as PPA JE—

Proposition - Properties of A and V

The following hold

m A is maximal monotone.

m Let o7|K||* < 1, then V is positive definite.

The simplified characterization
2D — (V4 )7 V2® = (Vid + VL A)) T VW
=(id + V1A "1z

Proposition - Primal-Dual splitting as PPA

Under the previous setting, V"1 A : R’S“L" = ]R@JF” is maximally monotone, and the Primal-Dual
splitting iteration is equivalent to the proximal point algorithm for solving

find ze R™" such that 0 € V7 1A(z).

Primal-Dual splitting method

00000 O 00080 00O O 12/17



Convergence S o

Theorem - Convergence with constant step-size

For Primal-Dual splitting method, let R € TH(R™), F € TH(R") and K : R"” — R™ be bounded
linear. Let @ = 1, and o, 7 > 0 be such that

or|K|? < 1.
Then {(x*),u®)}, <y converges to a saddle point (x*,u*) of Z(x;u).

Primal-Dual splitting method

00000 O 000C® 00O O 13/17



Convergence Fesmd

Theorem - Convergence with constant step-size

For Primal-Dual splitting method, let R € TH(R™), F € TH(R") and K : R"” — R™ be bounded
linear. Let @ = 1, and o, 7 > 0 be such that

or|K|? < 1.
Then {(x*),u®)}, <y converges to a saddle point (x*,u*) of Z(x;u).

Theorem - Convergence speed

With the above convergence result,
m Sequence
|2® — 2=V = o(1/Vk).
m Duality gap: let
KO LS 6 and a0 = LYYy,

Then (F + R o K)(x®)) — (F + R o K)(x*) = O(1/K).

Primal-Dual splitting method 00000 © 00008 OO © 13/17



Variants

Strong convexity, smoothness and three terms



Variants of Chambolle-Pock Primal-Dual splitting method A=

Problem - Non-smooth optimization problem

Consider

min {900 = F(0) + R(Kx) }.

with
mFe Fo(Rn) andR € Fo(Rm)
m K:R" — R™ be bounded linear.

Variants 14/17




Variants of Chambolle-Pock Primal-Dual splitting method rne=a Ul

IN\F7sJTUl 1L

Extra assumption

m One function is strongly convex, e.g. F is a-strongly convex.

Algorithm - Variant 1

initial: (x(*),u(®)) € dom(F) x dom(R) and X(®) = x(9); 5, 75 > 0 such that
0'07'0”'(”2 < 1.
repeat:
1. Dual update: u**V) = prox, p. (% + o Kx "))
2. Primal update: X+ = prox_ (x® — nK*uk+D)
3. Paras update: 9;( = \/ﬁ, Tk+1 = Gka, Ok+1 = Uk/ak
4. Extrapolation: X(t1) = x(k+1) 1 g, (x(k+1) — x(k))

until: stopping criterion is satisfied.

Variants 00000 O 00000 @00 O 14/17



Variants of Chambolle-Pock Primal-Dual splitting method N

Extra assumption

m Fis a-strongly convex and R* is d-strongly convex.

Algorithm - Variant 2

initial: (x(9,u(®)) € dom(F) x dom(R) and X(*) = x(9); Choose 1 < 2v/ad/|K| and

S _ L 1
O-_Z’ T—% and oe[m,l]

repeat:
1. Dual update: u*+t1) = prox . (u® 4 oKx(¥))
2. Primal update: xk*1) = prox_(x®) — 7K*uk+1))
3. Extrapolation: X(kt1) = x(k+1) 1 g(x(k+1) _ x(k))

until: stopping criterion is satisfied.

Variants 00000 O 00000 @00 O 14/17



Primal-Dual fixed-point algorithm Arg=smdn

Problem - Non-smooth optimization problem

Consider

min {900 = F(0) + R(Kx) }.

with
m F € C/(R") and R € TH(R™).
m K:R" — R™ be bounded linear.

Variants 15/17




Primal-Dual fixed-point algorithm Arg=smdn

initial: (x(©,u(®) € dom(F) x dom(R), 0 < A < |K||> and 0 < v < 2/L.
repeat:
1. Forward update: x(kt1/2) = x() — 4 F(x(k))
2. Dual update: u**1) = (Id — prox., /) (Kx*T1/2) 4 (1d — AKK*)u®))
3. Primal update: x(kt1) = x(k+1/2) _ \g*y(k+1)

until: stopping criterion is satisfied.

Variants 00000 O 00000 080 O 15/17



Primal-Dual fixed-point algorithm Ag=rsmdn

Algorithm - Primal-Dual fixed-point algorithm
initial: (x(©,u(®) € dom(F) x dom(R), 0 < A < |K||> and 0 < v < 2/L.
repeat:
1. Forward update: x(kt1/2) = x() — 4 F(x(k))
2. Dual update: u**1) = (Id — prox., /) (Kx*T1/2) 4 (1d — AKK*)u®))
3. Primal update: x(kt1) = x(k+1/2) _ \g*y(k+1)

until: stopping criterion is satisfied.

Fixed-point characterization

DN T 1d 0] [id—prox,,,, 0] [ld—AKK* K —~KVF] (u®
xk+D ) T K 1d 0 Id 0 Id —~yVF | \x®

Variants 15/17




Primal-Dual splitting for three functions .

Problem - Non-smooth optimization problem

Consider

min {CI)(x) = E(x) 4+ G(x) + R(Kx)},

with
m G < C(R"),F € TH(R") and R € TH(R™).
m K:R" — R™ be bounded linear.

Variants 16/17




Primal-Dual splitting for three functions Pr———

Problem - Non-smooth optimization problem

Consider

min {<I>(x) = E(x) 4+ G(x) + R(Kx)},

with
m G < C(R"),F € TH(R") and R € TH(R™).
m K:R" — R™ be bounded linear.

Suppose zer(OF + VG + K* o R o K) is non-empty, and let x* € zer(OF + VG + K* o OR o K).
Then
0 € OF(x*) + VG(x*) + K*OR(Kx*).

Variants 16/17




Primal-Dual splitting for three functions AN

Problem - Non-smooth optimization problem

Consider
min {(I)(x) “F(x) + G(x) + R(Kx)},
XERn
with
m G < C(R"),F € TH(R") and R € TH(R™).
m K : R" — R™ be bounded linear.

Suppose zer(OF + VG + K* o R o K) is non-empty, and let x* € zer(OF + VG + K* o OR o K).
Then

0 € OF(x*) + VG(x*) + K*OR(Kx*).

Since OR is set-valued, there exists u* € OR(Kx*) such that
0 € OF(x*) + VG(x*) + K*u* and Kx* € (OR) ! (u®).

Variants ocoe 16/17



Primal-Dual splitting for three functions Pr———

Problem - Non-smooth optimization problem

Consider

min {<I>(x) = E(x) 4+ G(x) + R(Kx)},

with
m G < C(R"),F € TH(R") and R € TH(R™).
m K:R" — R™ be bounded linear.

Suppose zer(OF + VG + K* o R o K) is non-empty, and let x* € zer(OF + VG + K* o OR o K).
Then
0 € OF(x*) + VG(x*) + K*OR(Kx*).

0 € OF(x*) + VG(x*) + K*u™,

find u* ¢ R™ h that Jx* € R"
o sl T {o € R (u*) — Kx*.

Variants 16/17




Primal-Dual splitting for three functions Arg=rsmd)

Algorithm - A Primal-Dual splitting method

initial: (x(©,u(®) € dom(F + G) x dom(R); 0,7 > 0and § = 5(1 — o|K|*)~" such that
Pk € [076]

1 2L
~—olk|" =3 and %Pk@— pk) = +0o0
€

repeat:
1. Dual update: *+1) = prox, 5. (U 4 oKx®)).
2. Primal update: X+ = prox_  (x — 7VG(x®)) 4 7K* (2a¢*+D) — u®))
3. Extrapolation: (x(k+1) yk+1)) = p (xk+D gh+1) 4 (1 — p ) (x®, u®)
until: stopping criterion is satisfied.

Variants 16/17
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