An Introduction to Non-smooth Optimization

Lecture 04 - Primal-Dual Splitting Methods

Jingwei LIANG

Institute of Natural Sciences, Shanghai Jiao Tong University

Email: optimization.sjtu@gmail.com Office: Room 355, No. 6 Science Building

Previously

TV based image processing Let $p \in \{1, 2\}$,

$$\min_{\mathbf{x}\in\mathbb{R}^{m\times n}} \mu \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{f} - \mathcal{F}\mathbf{x}\|_p^p.$$

Previously

TV based image processing Let $p \in \{1, 2\}$,

$$\min_{\mathbf{x}\in\mathbb{R}^{m\times n}} \mu \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{f} - \mathcal{F}\mathbf{x}\|_p^p.$$

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x})\Big\},\$$

with

- $F \in \Gamma_0(\mathbb{R}^n), R \in \Gamma_0(\mathbb{R}^m)$
- **K** : $\mathbb{R}^n \to \mathbb{R}^m$ is bounded linear.

Outline

Conjugation

2 Duality

Definition - Conjugate

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$, the conjugate of R is defined by $R^*(\mu) \stackrel{\text{def}}{=} \sup_{x \to \infty} (/|\mathbf{x}| \cdot \mu) = R(\mathbf{x})$

$$f^{*}(\boldsymbol{u}) = \sup_{\boldsymbol{x} \in \mathbb{R}^{n}} \left(\langle \boldsymbol{x} \mid \boldsymbol{u} \rangle - R(\boldsymbol{x}) \right)$$

Biconjugate $R^{**} = (R^*)^*$.

 Also called Fenchel conjugate, Legendre transform, or Legendre-Fenchel transform.

).

Definition - Conjugate

Let $R: \mathbb{R}^n \to]-\infty, +\infty]$, the conjugate of *R* is defined by

$$\mathsf{R}^*(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \sup_{\mathbf{x} \in \mathbb{R}^n} (\langle \mathbf{x} \mid \mathbf{u} \rangle - \mathsf{R}(\mathbf{x})).$$

Example - Support function

Let $S \subseteq \mathbb{R}^n$ be a non-empty convex set, the support function of S is defined by

 $\sigma_{\mathsf{S}}(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \sup_{\mathbf{x} \in \mathsf{S}} \langle \mathbf{x} \mid \mathbf{u} \rangle = \iota_{\mathsf{S}}^*(\mathbf{u}).$

Let *S* be a linear subspace of \mathbb{R}^n , then

$$\sigma_{\mathsf{S}}(\mathbf{u}) = \iota_{\mathsf{S}^{\perp}}(\mathbf{u}).$$

Conjugation

Definition - Conjugate

Let $\mathsf{R}:\mathbb{R}^n
ightarrow]-\infty,+\infty],$ the conjugate of R is defined by

$$\mathsf{R}^*(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \sup_{\mathbf{x} \in \mathbb{R}^n} (\langle \mathbf{x} \mid \mathbf{u} \rangle - \mathsf{R}(\mathbf{x})).$$

Example - ℓ_2 -norm square Let $R = \frac{1}{2} \| \mathbf{x} \|^2$, $R^*(\mathbf{u}) = \frac{1}{2} \| \mathbf{u} \|^2$.

Self-conjugacy

Definition - Conjugate

Let ${\it R}: \mathbb{R}^n
ightarrow]-\infty, +\infty],$ the conjugate of ${\it R}$ is defined by

$$R^*(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \sup_{\mathbf{x} \in \mathbb{R}^n} (\langle \mathbf{x} \mid \mathbf{u} \rangle - R(\mathbf{x})).$$

Example - ℓ_2 -norm square

Let
$${\sf R}=rac{1}{2}\|{\sf x}\|^2$$
 ,
$${\sf R}^*({\sf u})=rac{1}{2}\|{\sf u}\|^2.$$

Self-conjugacy

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n . Its dual norm, denoted by $\|\cdot\|_*$, is defined as $\|\mathbf{u}\|_* = \sup \{ \langle \mathbf{u} \mid \mathbf{x} \rangle : \|\mathbf{x}\| \le 1 \}.$

Definition - Conjugate

Let $\mathsf{R}:\mathbb{R}^n\rightarrow]-\infty,+\infty],$ the conjugate of R is defined by

$$R^*(\mathbf{u}) \stackrel{\text{\tiny def}}{=} \sup_{\mathbf{x} \in \mathbb{R}^n} (\langle \mathbf{x} \mid \mathbf{u} \rangle - R(\mathbf{x})).$$

Example - ℓ_2 -norm square

Let
$${\it R}=rac{1}{2}\|{\it x}\|^2$$
 , ${\it R}^*({\it u})=rac{1}{2}\|{\it u}\|^2.$

Self-conjugacy

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n . Its dual norm, denoted by $\|\cdot\|_*$, is defined as

$$\left\| \mathbf{u} \right\|_* = \sup\left\{ \left\langle \mathbf{u} \mid \mathbf{x} \right\rangle \; : \; \left\| \mathbf{x} \right\| \le 1
ight\}.$$

Example - Conjugate of norm

Let $R = \|\mathbf{x}\|$ be a norm with dual norm $\|\cdot\|_*$. Then

$$\mathbf{R}^*(\mathbf{u}) = \begin{cases} 0 & \|\mathbf{u}\|_* \leq 1, \\ +\infty & o.w. \end{cases}$$

Conjugation

Convexity of conjugate *R*^{*} is closed and convex.

Convexity of conjugate *R*^{*} is closed and convex.

Fenchel-Young inequality Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper. Then

 $R(\mathbf{x}) + R^*(\mathbf{u}) \ge \langle \mathbf{x} \mid \mathbf{u} \rangle.$

Convexity of conjugate *R*^{*} is closed and convex.

Fenchel-Young inequality Let $R : \mathbb{R}^n \to] - \infty, +\infty]$ be proper. Then

 $R(\mathbf{x}) + R^*(\mathbf{u}) \ge \langle \mathbf{x} \mid \mathbf{u} \rangle.$

Let *F*, *R* be functions from \mathbb{R}^n to $[-\infty, +\infty]$. Then **a** $R^{**} \leq R$. **b** $F \leq R \implies [F^* \geq R^* \text{ and } F^{**} \leq R^{**}].$

Convexity of conjugate *R*^{*} is closed and convex.

Fenchel-Young inequality Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper. Then

 $R(\mathbf{x}) + R^*(\mathbf{u}) \ge \langle \mathbf{x} \mid \mathbf{u} \rangle.$

Let *F*, *R* be functions from
$$\mathbb{R}^n$$
 to $[-\infty, +\infty]$. Then
a $R^{**} \leq R$.
b $F \leq R \implies [F^* \geq R^* \text{ and } F^{**} \leq R^{**}]$.

Let
$$R : \mathbb{R}^n \to] - \infty, +\infty]$$
. Then
 $\forall \alpha > 0,$
 $(\alpha R)^* = \alpha R^* (\cdot / \alpha) \text{ and } (\alpha R (\cdot / \alpha))^* = \alpha R^*.$
Let $K : \mathbb{R}^n \to \mathbb{R}^n$ be bijective. Then
 $(R \circ K)^* = R^* \circ K^{*-1}.$

Theorem - Fenchel-Moreau

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper. Then R is closed and convex if and only if $R = R^{**}$. In this case, R^* is proper as well.

Theorem - Fenchel-Moreau

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper. Then R is closed and convex if and only if $R = R^{**}$. In this case, R^* is proper as well.

Corollary

Let $R \in \Gamma_0(\mathbb{R}^n)$, then $R^* \in \Gamma_0(\mathbb{R}^n)$ and $R^{**} = R$.

Moreau's decomposition

Theorem - Moreau's decomposition

Let $R \in \Gamma_0(\mathbb{R}^n)$ be continuous and convex, let $\gamma > 0$. Then the following hold

Moreau's identify given any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x} = \operatorname{prox}_{\gamma R}(\mathbf{x}) + \gamma \operatorname{prox}_{R^*/\gamma}\left(\frac{\mathbf{x}}{\gamma}\right).$$

Moreau's decomposition

Theorem - Moreau's decomposition

Let $R \in \Gamma_0(\mathbb{R}^n)$ be continuous and convex, let $\gamma > 0$. Then the following hold

Moreau's identify given any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x} = \operatorname{prox}_{\gamma \mathsf{R}}(\mathbf{x}) + \gamma \operatorname{prox}_{{\mathsf{R}}^*/\gamma}\left(\frac{\mathbf{x}}{\gamma}\right).$$

For any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathsf{R}(\operatorname{prox}_{\gamma\mathsf{R}}(\mathsf{x})) + \mathsf{R}^*(\operatorname{prox}_{\mathsf{R}^*/\gamma}(\mathsf{x}/\gamma)) = \langle \operatorname{prox}_{\gamma\mathsf{R}}(\mathsf{x}) | \operatorname{prox}_{\mathsf{R}^*/\gamma}(\mathsf{x}/\gamma) \rangle.$$

Calculus

I

Theorem - Subdifferential and conjugation

Let $R \in \Gamma_0(\mathbb{R}^n)$, let $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$. Then the following are equivalent

$$\blacksquare (\mathbf{X}, \mathbf{U}) \in \operatorname{gra}(\partial \mathbf{R}).$$

$$\blacksquare R(\mathbf{x}) + R^*(\mathbf{u}) = \langle \mathbf{x} \mid \mathbf{u} \rangle.$$

 $\blacksquare (\mathbf{u}, \mathbf{x}) \in \operatorname{gra}(\partial \mathbf{R}^*).$

When
$$R \in \Gamma_0(\mathbb{R}^n)$$
, $\partial R^* = (\partial R)^{-1}$.

Theorem - Strong convexity and conjugation

Let $F : \mathbb{R}^n \to \mathbb{R}$ be continuous and convex, let $\beta > 0$. Then the following are equivalent

- ∇F is $1/\beta$ -Lipschitz continuous.
- **F**^{*} is β -strongly convex.

Duality

Proposition - Duality inequality

Let $F : \mathbb{R}^n \to]-\infty, +\infty]$ be proper and $R : \mathbb{R}^m \to]-\infty, +\infty]$ be proper, let $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear. Then

$$(\forall \mathbf{x} \in \mathbb{R}^n)(\forall \mathbf{u} \in \mathbb{R}^m) \qquad F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \geq -F^*(-\mathbf{K}^*\mathbf{u}) - R^*(\mathbf{u}).$$

and

$$\inf(F + R \circ \mathbf{K})(\mathbb{R}^n) \ge -\inf(F^* \circ -\mathbf{K}^* + R^*)(\mathbb{R}^n).$$

Definition - Fenchel-Rockafellar duality

Let $F : \mathbb{R}^n \to]-\infty, +\infty]$, $R : \mathbb{R}^m \to]-\infty, +\infty]$ and $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear. The *primal problem* associated with the composite function $F + R \circ K$ is

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} F(\boldsymbol{x}) + R(\boldsymbol{K}\boldsymbol{x}), \qquad (\mathscr{P})$$

its dual problem is

$$\min_{\boldsymbol{u}\in\mathbb{R}^m} F^*(-\boldsymbol{K}^*\boldsymbol{u}) + R^*(\boldsymbol{u}). \tag{(2)}$$

The primal and dual optimal values are

$$\mu = \inf(\mathbf{F} + \mathbf{R} \circ \mathbf{K})(\mathbb{R}^n) \quad \text{and} \quad \mu^* = \inf(\mathbf{F}^* \circ - \mathbf{K}^* + \mathbf{R}^*)(\mathbb{R}^m)$$

and the duality gap is

$$\mathcal{G}_{F,R,\mathbf{K}} = \begin{cases} 0: \text{ if } \mu = -\mu^* \in \{-\infty, +\infty\},\\ \mu + \mu^*: \text{ o.w.} \end{cases}$$

Definition - Duality gap

Let $F : \mathbb{R}^n \to]-\infty, +\infty]$ and $R : \mathbb{R}^m \to]-\infty, +\infty]$ be proper, let $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear. Set

$$\mu = \inf(\mathbf{F} + \mathbf{R} \circ \mathbf{K})(\mathbb{R}^n) \text{ and } \mu^* = \inf(\mathbf{F}^* \circ -\mathbf{K}^* + \mathbf{R}^*)(\mathbb{R}^m).$$

Then the following hold

 $\mu \geq -\mu^*.$ $\mathcal{G}_{F,R,\mathbf{K}} \in [0, +\infty].$ $\mu = -\mu^* \iff \mathcal{G}_{F,R,\mathbf{K}} = 0.$

Fenchel-Rockafellar duality

Proposition - Strong duality

Let $F \in \Gamma_0(\mathbb{R}^n)$ and $R \in \Gamma_0(\mathbb{R}^m)$ such that

$$\operatorname{ri}(\mathbf{K}\operatorname{dom}(\mathbf{F})) \cap \operatorname{ri}(\operatorname{dom}(\mathbf{R})) \neq \emptyset.$$

Then

$$\inf(F + R \circ K)(\mathbb{R}^n) = -\min(F^* \circ - K^* + R^*)(\mathbb{R}^m).$$

Primal-Dual splitting method

Algorithm, and convergence

Proposition - Saddle-point problem

Let $F : \mathbb{R}^n \to]-\infty, +\infty]$ and $R : \mathbb{R}^m \to]-\infty, +\infty]$ be proper, let $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear such that $\operatorname{dom}(R) \cap K \operatorname{dom}(F) \neq \emptyset$. Then the following hold

The primal problem is

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})+R(\mathbf{K}\mathbf{x}).$$
 (*P*)

Proposition - Saddle-point problem

Let $F : \mathbb{R}^n \to]-\infty, +\infty]$ and $R : \mathbb{R}^m \to]-\infty, +\infty]$ be proper, let $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear such that $\operatorname{dom}(R) \cap K \operatorname{dom}(F) \neq \emptyset$. Then the following hold

The primal problem is

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})+R(\mathbf{K}\mathbf{x}). \tag{P}$$

The dual problem is

$$\min_{\boldsymbol{u}\in\mathbb{R}^m}\boldsymbol{F}^*(-\boldsymbol{K}^*\boldsymbol{u})+\boldsymbol{R}^*(\boldsymbol{u}). \tag{(2)}$$

Proposition - Saddle-point problem

Let $F : \mathbb{R}^n \to]-\infty, +\infty]$ and $R : \mathbb{R}^m \to]-\infty, +\infty]$ be proper, let $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear such that $\operatorname{dom}(R) \cap K \operatorname{dom}(F) \neq \emptyset$. Then the following hold

The primal problem is

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})+R(\mathbf{K}\mathbf{x}). \tag{P}$$

The dual problem is

$$\min_{\boldsymbol{u}\in\mathbb{R}^m}\boldsymbol{F}^*(-\boldsymbol{K}^*\boldsymbol{u})+\boldsymbol{R}^*(\boldsymbol{u}). \tag{(2)}$$

The saddle-point problem is

$$\mathscr{L}(\mathbf{x};\mathbf{u}) = \min_{\mathbf{x}\in \operatorname{dom}(F)} \max_{\mathbf{u}\in \operatorname{dom}(R^*)} F(\mathbf{x}) + \langle \mathbf{K}\mathbf{x} \mid \mathbf{u} \rangle - R^*(\mathbf{u}).$$

Proposition - Saddle-point problem

Let $F : \mathbb{R}^n \to] - \infty, +\infty]$ and $R : \mathbb{R}^m \to] - \infty, +\infty]$ be proper, let $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear such that $\operatorname{dom}(R) \cap K \operatorname{dom}(F) \neq \emptyset$. Then the following hold

The primal problem is

$$\min_{\mathbf{x}\in\mathbb{R}^n}F(\mathbf{x})+R(\mathbf{K}\mathbf{x}). \tag{P}$$

The dual problem is

$$\min_{\mathbf{u}\in\mathbb{R}^m} F^*(-\mathbf{K}^*\mathbf{u}) + R^*(\mathbf{u}). \tag{(D)}$$

The saddle-point problem is

$$\mathscr{L}(\mathbf{x};\mathbf{u}) = \min_{\mathbf{x}\in \operatorname{dom}(F)} \max_{\mathbf{u}\in \operatorname{dom}(R^*)} F(\mathbf{x}) + \langle \mathbf{K}\mathbf{x} \mid \mathbf{u} \rangle - R^*(\mathbf{u}).$$

Suppose the optimal values μ of (\mathscr{P}) and μ^* of (\mathscr{D}) satisfy $\mu = -\mu^* \in \mathbb{R}$, let $(\mathbf{x}^*, \mathbf{u}^*) \in \operatorname{dom}(F) \times \operatorname{dom}(R^*)$. Then $(\mathbf{x}^*, \mathbf{u}^*)$ is a saddle point of $\mathscr{L}(\mathbf{x}; \mathbf{u})$ if and only if $-\mathbf{K}^*\mathbf{u}^* \in \partial F(\mathbf{x}^*)$ and $\mathbf{K}\mathbf{x}^* \in \partial R^*(\mathbf{u}^*)$.

A Primal-Dual splitting method

Let

$$L = \|\mathbf{K}\| \stackrel{\text{\tiny def}}{=} \max \left\{ \|\mathbf{K}\mathbf{x}\| : \mathbf{x} \in \mathbb{R}^n \quad \text{such that} \quad \|\mathbf{x}\| \leq 1 \right\}.$$

Algorithm - Primal-Dual splitting method [Chambolle & Pock '11]

initial: $(\mathbf{x}^{(0)}, \mathbf{u}^{(0)}) \in \operatorname{dom}(\mathbf{F}) \times \operatorname{dom}(\mathbf{R}) \text{ and } \overline{\mathbf{x}}^{(0)} = \mathbf{x}^{(0)}; \theta \in [0, 1] \text{ and } \sigma, \tau > 0 \text{ such that}$ $\sigma \tau \mathbf{L}^2 \leq 1.$

repeat:

1. Dual update:
$$\mathbf{u}^{(k+1)} = \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k)})$$

2. Primal update:
$$\mathbf{x}^{(k+1)} = \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k+1)})$$

3. Extrapolation:
$$\bar{\mathbf{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$$

until: stopping criterion is satisfied.

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

The property of proximity operator yields

$$\begin{aligned} \mathbf{x}^{(k)} &- \tau \mathbf{K}^* \mathbf{u}^{(k)} - \mathbf{x}^{(k+1)} \in \tau \partial F(\mathbf{x}^{(k+1)}) \\ & \mathbf{\bar{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k)} &+ \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)} - \mathbf{u}^{(k+1)} \in \sigma \partial R^*(\mathbf{u}^{(k+1)}) \end{aligned}$$

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

The property of proximity operator yields

$$\begin{aligned} \mathbf{x}^{(k)} &- \tau \mathbf{K}^* \mathbf{u}^{(k)} - \mathbf{x}^{(k+1)} \in \tau \partial F(\mathbf{x}^{(k+1)}) \\ & \mathbf{\bar{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k)} &+ \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)} - \mathbf{u}^{(k+1)} \in \sigma \partial R^*(\mathbf{u}^{(k+1)}) \end{aligned}$$

which further leads to

$$\begin{aligned} \mathbf{x}^{(k)} &- \mathbf{x}^{(k+1)} - \tau \mathbf{K}^* \mathbf{u}^{(k)} + \tau \mathbf{K}^* \mathbf{u}^{(k+1)} \in \tau \partial \mathbf{F}(\mathbf{x}^{(k+1)}) + \tau \mathbf{K}^* \mathbf{u}^{(k+1)} \\ &\mathbf{u}^{(k)} - \mathbf{u}^{(k+1)} + \sigma \theta \mathbf{K}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \in \sigma \partial \mathbf{R}^*(\mathbf{u}^{(k+1)}) - \sigma \mathbf{K} \mathbf{x}^{(k+1)} \end{aligned}$$

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

The property of proximity operator yields

$$\begin{aligned} \mathbf{x}^{(k)} &- \tau \mathbf{K}^* \mathbf{u}^{(k)} - \mathbf{x}^{(k+1)} \in \tau \partial F(\mathbf{x}^{(k+1)}) \\ & \mathbf{\bar{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k)} &+ \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)} - \mathbf{u}^{(k+1)} \in \sigma \partial \mathbf{R}^*(\mathbf{u}^{(k+1)}) \end{aligned}$$

which further leads to

$$\frac{\mathbf{x}^{(k)} - \mathbf{x}^{(k+1)}}{\tau} - \mathbf{K}^* (\mathbf{u}^{(k)} - \mathbf{u}^{(k+1)}) \in \partial \mathbf{F}(\mathbf{x}^{(k+1)}) + \mathbf{K}^* \mathbf{u}^{(k+1)}}{\frac{\mathbf{u}^{(k)} - \mathbf{u}^{(k+1)}}{\sigma} - \theta \mathbf{K}(\mathbf{x}^{(k)} - \mathbf{x}^{(k+1)}) \in \partial \mathbf{R}^* (\mathbf{u}^{(k+1)}) - \mathbf{K} \mathbf{x}^{(k+1)}}{\sigma}$$

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

which further leads to

$$\frac{\mathbf{x}^{(k)} - \mathbf{x}^{(k+1)}}{\tau} - \mathbf{K}^* (\mathbf{u}^{(k)} - \mathbf{u}^{(k+1)}) \in \partial \mathsf{F}(\mathbf{x}^{(k+1)}) + \mathbf{K}^* \mathbf{u}^{(k+1)}}{\frac{\mathbf{u}^{(k)} - \mathbf{u}^{(k+1)}}{\sigma} - \theta \mathbf{K}(\mathbf{x}^{(k)} - \mathbf{x}^{(k+1)}) \in \partial \mathsf{R}^* (\mathbf{u}^{(k+1)}) - \mathbf{K} \mathbf{x}^{(k+1)}}{\sigma}$$

Rearrange terms

$$\begin{bmatrix} \mathbf{Id}_n/\tau & -\mathbf{K}^* \\ -\theta\mathbf{K} & \mathbf{Id}_m/\sigma \end{bmatrix} \begin{pmatrix} \mathbf{x}^{(k)} - \mathbf{x}^{(k+1)} \\ \mathbf{u}^{(k)} - \mathbf{u}^{(k+1)} \end{pmatrix} \in \begin{bmatrix} \partial \mathbf{F} & \mathbf{K}^* \\ -\mathbf{K} & \partial \mathbf{R}^* \end{bmatrix} \begin{pmatrix} \mathbf{x}^{(k+1)} \\ \mathbf{u}^{(k+1)} \end{pmatrix}$$

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau \mathsf{F}}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma \mathsf{R}^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

Lastly

$$\begin{pmatrix} \mathbf{x}^{(k+1)} \\ \mathbf{u}^{(k+1)} \end{pmatrix} = \left(\begin{bmatrix} \mathbf{Id}_n/\tau & -\mathbf{K}^* \\ -\mathbf{\theta}\mathbf{K} & \mathbf{Id}_m/\sigma \end{bmatrix} + \begin{bmatrix} \partial \mathbf{F} & \mathbf{K}^* \\ -\mathbf{K} & \partial \mathbf{R}^* \end{bmatrix} \right)^{-1} \begin{bmatrix} \mathbf{Id}_n/\tau & -\mathbf{K}^* \\ -\mathbf{\theta}\mathbf{K} & \mathbf{Id}_m/\sigma \end{bmatrix} \begin{pmatrix} \mathbf{x}^{(k)} \\ \mathbf{u}^{(k)} \end{pmatrix}$$

Consider the following order of iteration

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k)}) \\ \mathbf{\bar{x}}^{(k+1)} &= \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) \\ \mathbf{u}^{(k+1)} &= \operatorname{prox}_{\sigma R^*}(\mathbf{u}^{(k)} + \sigma \mathbf{K} \mathbf{\bar{x}}^{(k+1)}) \end{aligned}$$

Lastly

$$\begin{pmatrix} \mathbf{x}^{(k+1)} \\ \mathbf{u}^{(k+1)} \end{pmatrix} = \left(\begin{bmatrix} \mathbf{Id}_n/\tau & -\mathbf{K}^* \\ -\theta\mathbf{K} & \mathbf{Id}_m/\sigma \end{bmatrix} + \begin{bmatrix} \partial \mathbf{F} & \mathbf{K}^* \\ -\mathbf{K} & \partial \mathbf{R}^* \end{bmatrix} \right)^{-1} \begin{bmatrix} \mathbf{Id}_n/\tau & -\mathbf{K}^* \\ -\theta\mathbf{K} & \mathbf{Id}_m/\sigma \end{bmatrix} \begin{pmatrix} \mathbf{x}^{(k)} \\ \mathbf{u}^{(k)} \end{pmatrix}$$

Define the following operator: let $\theta = 1$,

$$\mathbf{z}^{(k)} = \begin{pmatrix} \mathbf{x}^{(k)} \\ \mathbf{u}^{(k)} \end{pmatrix} \in \mathbb{R}^{m+n}, \quad \mathcal{A} = \begin{bmatrix} \partial F & \mathbf{K}^* \\ -\mathbf{K} & \partial R^* \end{bmatrix} \quad \text{and} \quad \mathcal{V} = \begin{bmatrix} \mathbf{Id}_n / \tau & -\mathbf{K}^* \\ -\mathbf{K} & \mathbf{Id}_m / \sigma \end{bmatrix}.$$

Primal-Dual splitting as PPA

Proposition - Properties of ${\cal A}$ and ${\cal V}$

The following hold

- \mathcal{A} is maximal monotone.
- Let $\sigma \tau \|\mathbf{K}\|^2 < 1$, then \mathcal{V} is positive definite.

The simplified characterization

$$\begin{split} \mathbf{z}^{(k+1)} &= (\mathcal{V} + \mathcal{A})^{-1} \mathcal{V} \mathbf{z}^{(k)} = \left(\mathcal{V} (\mathbf{Id} + \mathcal{V}^{-1} \mathcal{A}) \right)^{-1} \mathcal{V} \mathbf{z}^{(k)} \\ &= (\mathbf{Id} + \mathcal{V}^{-1} \mathcal{A})^{-1} \mathbf{z}^{(k)} \end{split}$$

Primal-Dual splitting as PPA

Proposition - Properties of ${\cal A}$ and ${\cal V}$

The following hold

- \mathcal{A} is maximal monotone.
- Let $\sigma \tau \|\mathbf{K}\|^2 < 1$, then \mathcal{V} is positive definite.

The simplified characterization

$$\begin{aligned} \mathbf{z}^{(k+1)} &= (\mathcal{V} + \mathcal{A})^{-1} \mathcal{V} \mathbf{z}^{(k)} = \left(\mathcal{V} (\mathbf{Id} + \mathcal{V}^{-1} \mathcal{A}) \right)^{-1} \mathcal{V} \mathbf{z}^{(k)} \\ &= (\mathbf{Id} + \mathcal{V}^{-1} \mathcal{A})^{-1} \mathbf{z}^{(k)} \end{aligned}$$

Proposition - Monotonicity of $\mathcal{V}^{-1}\mathcal{A}$

Let $\mathcal{A} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximally monotone, let $\mathcal{V} \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Let $\mathbb{R}^n_{\mathcal{V}}$ be the space obtained by endowing \mathbb{R}^n with the scalar product

$$(\mathbf{x},\mathbf{y})\mapsto \langle \mathbf{x}\mid \mathbf{y}\rangle_{\mathbb{R}^n_{\mathcal{V}}}=\langle \mathcal{V}\mathbf{x}\mid \mathbf{y}\rangle.$$

Then $\mathcal{V}^{-1}\mathcal{A}: \mathbb{R}^n_{\mathcal{V}} \rightrightarrows \mathbb{R}^n_{\mathcal{V}}$ is maximally monotone.

Primal-Dual splitting as PPA

Proposition - Properties of ${\cal A}$ and ${\cal V}$

The following hold

- \mathcal{A} is maximal monotone.
- Let $\sigma \tau \|\mathbf{K}\|^2 < 1$, then \mathcal{V} is positive definite.

The simplified characterization

$$\begin{aligned} \mathbf{z}^{(k+1)} &= (\mathcal{V} + \mathcal{A})^{-1} \mathcal{V} \mathbf{z}^{(k)} = \left(\mathcal{V} (\mathbf{Id} + \mathcal{V}^{-1} \mathcal{A}) \right)^{-1} \mathcal{V} \mathbf{z}^{(k)} \\ &= (\mathbf{Id} + \mathcal{V}^{-1} \mathcal{A})^{-1} \mathbf{z}^{(k)} \end{aligned}$$

Proposition - Primal-Dual splitting as PPA

Under the previous setting, $\mathcal{V}^{-1}\mathcal{A}: \mathbb{R}^{m+n}_{\mathcal{V}} \rightrightarrows \mathbb{R}^{m+n}_{\mathcal{V}}$ is maximally monotone, and the Primal-Dual splitting iteration is equivalent to the proximal point algorithm for solving

find $\mathbf{z} \in \mathbb{R}^{m+n}$ such that $\mathbf{0} \in \mathcal{V}^{-1}\mathcal{A}(\mathbf{z})$.

Convergence

Theorem - Convergence with constant step-size

For Primal-Dual splitting method, let $R \in \Gamma_0(\mathbb{R}^m)$, $F \in \Gamma_0(\mathbb{R}^n)$ and $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear. Let $\theta = 1$, and $\sigma, \tau > 0$ be such that

$$\sigma \tau \left\| \mathbf{K} \right\|^2 < 1.$$

Then $\{(\mathbf{x}^{(k)}, \mathbf{u}^{(k)})\}_{k \in \mathbb{N}}$ converges to a saddle point $(\mathbf{x}^{\star}, \mathbf{u}^{\star})$ of $\mathscr{L}(\mathbf{x}; \mathbf{u})$.

Convergence

Theorem - Convergence with constant step-size

For Primal-Dual splitting method, let $R \in \Gamma_0(\mathbb{R}^m)$, $F \in \Gamma_0(\mathbb{R}^n)$ and $K : \mathbb{R}^n \to \mathbb{R}^m$ be bounded linear. Let $\theta = 1$, and $\sigma, \tau > 0$ be such that

$$\sigma\tau \left\| \mathbf{K} \right\|^2 < 1.$$

Then $\{(\mathbf{x}^{(k)}, \mathbf{u}^{(k)})\}_{k \in \mathbb{N}}$ converges to a saddle point $(\mathbf{x}^{\star}, \mathbf{u}^{\star})$ of $\mathscr{L}(\mathbf{x}; \mathbf{u})$.

Theorem - Convergence speed

With the above convergence result,

Sequence

$$\|\mathbf{z}^{(k)} - \mathbf{z}^{(k-1)}\| = \mathbf{o}\left(1/\sqrt{k}\right).$$

Duality gap: let

$$\tilde{\mathbf{x}}^{(K)} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{(k)} \text{ and } \tilde{\mathbf{u}}^{(K)} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{u}^{(k)}.$$

Then $(\mathbf{F} + \mathbf{R} \circ \mathbf{K})(\tilde{\mathbf{x}}^{(K)}) - (\mathbf{F} + \mathbf{R} \circ \mathbf{K})(\mathbf{x}^{\star}) = O(1/K).$

Variants

Variants of Chambolle-Pock Primal-Dual splitting method

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x})\Big\},\$$

with

•
$$F \in \Gamma_0(\mathbb{R}^n)$$
 and $R \in \Gamma_0(\mathbb{R}^m)$.

K : $\mathbb{R}^n \to \mathbb{R}^m$ be bounded linear.

Variants of Chambolle-Pock Primal-Dual splitting method

Extra assumption

• One function is strongly convex, *e.g.* F is α -strongly convex.

Algorithm - Variant 1

initial: $(\mathbf{x}^{(0)}, \mathbf{u}^{(0)}) \in \operatorname{dom}(\mathbf{F}) \times \operatorname{dom}(\mathbf{R}) \text{ and } \overline{\mathbf{x}}^{(0)} = \mathbf{x}^{(0)}; \sigma_0, \tau_0 > 0 \text{ such that}$ $\sigma_0 \tau_0 \|\mathbf{K}\|^2 \leq 1.$

repeat:

1. Dual update:
$$\mathbf{u}^{(k+1)} = \operatorname{prox}_{\sigma_k R^*}(\mathbf{u}^{(k)} + \sigma_k \mathbf{K} \mathbf{\bar{x}}^{(k)})$$

2. Primal update:
$$\mathbf{x}^{(k+1)} = \operatorname{prox}_{\tau_k F}(\mathbf{x}^{(k)} - \tau_k \mathbf{K}^* \mathbf{u}^{(k+1)})$$

3. Paras update:
$$\theta_k = \frac{1}{\sqrt{1+2\alpha\tau_k}}, \ \tau_{k+1} = \theta_k \tau_k, \ \sigma_{k+1} = \sigma_k / \theta_k$$

4. Extrapolation:
$$\bar{\mathbf{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \theta_k(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$$

until: stopping criterion is satisfied.

Variants of Chambolle-Pock Primal-Dual splitting method

Extra assumption

F is α -strongly convex and R^* is δ -strongly convex.

Algorithm - Variant 2

initial: $(\mathbf{x}^{(0)}, \mathbf{u}^{(0)}) \in \operatorname{dom}(F) \times \operatorname{dom}(R)$ and $\overline{\mathbf{x}}^{(0)} = \mathbf{x}^{(0)}$; Choose $\mu \leq 2\sqrt{\alpha\delta}/\|\mathbf{K}\|$ and

$$\sigma = \frac{\mu}{2\alpha}, \quad \tau = \frac{\mu}{2\delta} \quad \text{and} \quad \theta \in \left[\frac{1}{1+\mu}, 1\right].$$

repeat:

1. Dual update:
$$\mathbf{u}^{(k+1)} = \operatorname{prox}_{\sigma R^*} (\mathbf{u}^{(k)} + \sigma \mathbf{K} \overline{\mathbf{x}}^{(k)})$$

2. Primal update:
$$\mathbf{x}^{(k+1)} = \operatorname{prox}_{\tau F}(\mathbf{x}^{(k)} - \tau \mathbf{K}^* \mathbf{u}^{(k+1)})$$

3. Extrapolation:
$$\bar{\mathbf{x}}^{(k+1)} = \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$$

until: stopping criterion is satisfied.

Primal-Dual fixed-point algorithm

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x})\Big\},\$$

with

•
$$F \in C^1_L(\mathbb{R}^n)$$
 and $R \in \Gamma_0(\mathbb{R}^m)$.

K : $\mathbb{R}^n \to \mathbb{R}^m$ be bounded linear.

Primal-Dual fixed-point algorithm

Algorithm - Primal-Dual fixed-point algorithm

initial: $(\mathbf{x}^{(0)}, \mathbf{u}^{(0)}) \in \text{dom}(F) \times \text{dom}(R), 0 < \lambda < \|\mathbf{K}\|^2$ and $0 < \gamma < 2/L$. repeat:

- 1. Forward update: $\mathbf{x}^{(k+1/2)} = \mathbf{x}^{(k)} \gamma \nabla F(\mathbf{x}^{(k)})$
- 2. Dual update: $\mathbf{u}^{(k+1)} = \left(\mathbf{Id} \operatorname{prox}_{\gamma/\lambda R}\right) \left(\mathbf{K} \mathbf{x}^{(k+1/2)} + (\mathbf{Id} \lambda \mathbf{K} \mathbf{K}^*) \mathbf{u}^{(k)}\right)$
- **3.** Primal update: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k+1/2)} \lambda \mathbf{K}^* \mathbf{u}^{(k+1)}$

until: stopping criterion is satisfied.

Primal-Dual fixed-point algorithm

Algorithm - Primal-Dual fixed-point algorithm

initial: $(\mathbf{x}^{(0)}, \mathbf{u}^{(0)}) \in \text{dom}(F) \times \text{dom}(R), 0 < \lambda < \|\mathbf{K}\|^2 \text{ and } 0 < \gamma < 2/L.$ repeat:

- 1. Forward update: $\mathbf{x}^{(k+1/2)} = \mathbf{x}^{(k)} \gamma \nabla F(\mathbf{x}^{(k)})$
- 2. Dual update: $\mathbf{u}^{(k+1)} = \left(\mathbf{Id} \operatorname{prox}_{\gamma/\lambda R}\right) \left(\mathbf{K} \mathbf{x}^{(k+1/2)} + \left(\mathbf{Id} \lambda \mathbf{K} \mathbf{K}^*\right) \mathbf{u}^{(k)}\right)$

3. Primal update:
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k+1/2)} - \lambda \mathbf{K}^* \mathbf{u}^{(k+1)}$$

until: stopping criterion is satisfied.

Fixed-point characterization

$$\begin{pmatrix} \mathbf{u}^{(k+1)} \\ \mathbf{x}^{(k+1)} \end{pmatrix} = \begin{bmatrix} \mathbf{Id} & \mathbf{0} \\ -\lambda \mathbf{K}^* & \mathbf{Id} \end{bmatrix} \begin{bmatrix} \mathbf{Id} - \operatorname{prox}_{\gamma/\lambda \mathsf{R}} & \mathbf{0} \\ \mathbf{0} & \mathbf{Id} \end{bmatrix} \begin{bmatrix} \mathbf{Id} - \lambda \mathbf{K} \mathbf{K}^* & \mathbf{K} - \gamma \mathbf{K} \nabla \mathsf{F} \\ \mathbf{0} & \mathbf{Id} - \gamma \nabla \mathsf{F} \end{bmatrix} \begin{pmatrix} \mathbf{u}^{(k)} \\ \mathbf{x}^{(k)} \end{pmatrix}$$

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + G(\mathbf{x}) + R(\mathbf{K}\mathbf{x})\Big\},\$$

with

•
$$G \in C^1_L(\mathbb{R}^n)$$
, $F \in \Gamma_0(\mathbb{R}^n)$ and $R \in \Gamma_0(\mathbb{R}^m)$.

K : $\mathbb{R}^n \to \mathbb{R}^m$ be bounded linear.

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=}\mathsf{F}(\mathbf{x})+\mathsf{G}(\mathbf{x})+\mathsf{R}(\mathbf{K}\mathbf{x})\Big\},$$

with

•
$$G \in C^1_L(\mathbb{R}^n)$$
, $F \in \Gamma_0(\mathbb{R}^n)$ and $R \in \Gamma_0(\mathbb{R}^m)$.

K : $\mathbb{R}^n \to \mathbb{R}^m$ be bounded linear.

Suppose $\operatorname{zer}(\partial F + \nabla G + \mathbf{K}^* \circ \partial R \circ \mathbf{K})$ is non-empty, and let $\mathbf{x}^* \in \operatorname{zer}(\partial F + \nabla G + \mathbf{K}^* \circ \partial R \circ \mathbf{K})$. Then

$$\mathbf{0} \in \partial \mathsf{F}(\mathbf{X}^{\star}) + \nabla \mathsf{G}(\mathbf{X}^{\star}) + \mathbf{K}^{\star} \partial \mathsf{R}(\mathbf{K}\mathbf{X}^{\star}).$$

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + G(\mathbf{x}) + R(\mathbf{K}\mathbf{x})\Big\},\$$

with

G
$$\in C^1_L(\mathbb{R}^n)$$
, $F \in \Gamma_0(\mathbb{R}^n)$ and $R \in \Gamma_0(\mathbb{R}^m)$.

K : $\mathbb{R}^n \to \mathbb{R}^m$ be bounded linear.

Suppose $\operatorname{zer}(\partial F + \nabla G + \mathbf{K}^* \circ \partial R \circ \mathbf{K})$ is non-empty, and let $\mathbf{x}^* \in \operatorname{zer}(\partial F + \nabla G + \mathbf{K}^* \circ \partial R \circ \mathbf{K})$. Then

$$\boldsymbol{0} \in \partial \textbf{F}(\boldsymbol{x}^{\star}) + \nabla \textbf{G}(\boldsymbol{x}^{\star}) + \boldsymbol{K}^{\star} \partial \textbf{R}(\boldsymbol{K} \boldsymbol{x}^{\star}).$$

Since ∂R is set-valued, there exists $\mathbf{u}^{\star} \in \partial R(\mathbf{K}\mathbf{x}^{\star})$ such that

$$\mathbf{0} \in \partial F(\mathbf{x}^{\star}) + \nabla G(\mathbf{x}^{\star}) + \mathbf{K}^{\star} \mathbf{u}^{\star} \quad \text{and} \quad \mathbf{K} \mathbf{x}^{\star} \in (\partial R)^{-1}(\mathbf{u}^{\star}).$$

Problem - Non-smooth optimization problem

Consider

$$\min_{\mathbf{x}\in\mathbb{R}^n}\Big\{\Phi(\mathbf{x})\stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + G(\mathbf{x}) + R(\mathbf{K}\mathbf{x})\Big\},\$$

with

•
$$G \in C^1_L(\mathbb{R}^n)$$
, $F \in \Gamma_0(\mathbb{R}^n)$ and $R \in \Gamma_0(\mathbb{R}^m)$.

K : $\mathbb{R}^n \to \mathbb{R}^m$ be bounded linear.

Suppose $\operatorname{zer}(\partial F + \nabla G + \mathbf{K}^* \circ \partial R \circ \mathbf{K})$ is non-empty, and let $\mathbf{x}^* \in \operatorname{zer}(\partial F + \nabla G + \mathbf{K}^* \circ \partial R \circ \mathbf{K})$. Then

$$\mathbf{0} \in \partial \mathsf{F}(\mathbf{x}^{\star}) + \nabla \mathsf{G}(\mathbf{x}^{\star}) + \mathbf{K}^{\star} \partial \mathsf{R}(\mathbf{K}\mathbf{x}^{\star}).$$

find
$$\mathbf{u}^{\star} \in \mathbb{R}^{m}$$
 such that $\exists \mathbf{x}^{\star} \in \mathbb{R}^{n} \begin{cases} \mathbf{0} \in \partial F(\mathbf{x}^{\star}) + \nabla G(\mathbf{x}^{\star}) + \mathbf{K}^{\star} \mathbf{u}^{\star}, \\ \mathbf{0} \in \partial R^{\star}(\mathbf{u}^{\star}) - \mathbf{K} \mathbf{x}^{\star}. \end{cases}$

Variants

Algorithm - A Primal-Dual splitting method

$$\begin{split} \text{initial:} \ (\pmb{x}^{(0)}, \pmb{u}^{(0)}) \in \operatorname{dom}(\pmb{F} + \pmb{G}) \times \operatorname{dom}(\pmb{R}); \ \sigma, \tau > 0 \ \text{and} \ \delta = \frac{l}{2} (\frac{1}{\tau} - \sigma \|\pmb{K}\|^2)^{-1} \text{ such that} \\ \rho_k \in [0, \delta] \\ \frac{1}{\tau} - \sigma \|\pmb{K}\|^2 \geq \frac{l}{2} \quad \text{and} \quad \sum_{\pmb{k} \in \mathbb{N}} \rho_{\pmb{k}} (\delta - \rho_{\pmb{k}}) = +\infty. \end{split}$$

repeat:

1. Dual update:
$$\overline{\boldsymbol{u}}^{(k+1)} = \operatorname{prox}_{\sigma R^*}(\boldsymbol{u}^{(k)} + \sigma \boldsymbol{K} \boldsymbol{x}^{(k)}).$$

2. Primal update: $\overline{\boldsymbol{x}}^{(k+1)} = \operatorname{prox}_{\tau F}(\boldsymbol{x}^{(k)} - \tau \nabla G(\boldsymbol{x}^{(k)}) + \tau \boldsymbol{K}^*(2\overline{\boldsymbol{u}}^{(k+1)} - \boldsymbol{u}^{(k)}).$

3. Extrapolation:
$$(\mathbf{x}^{(k+1)}, \mathbf{u}^{(k+1)}) = \rho_k(\mathbf{\bar{x}}^{(k+1)}, \mathbf{\bar{u}}^{(k+1)}) + (1 - \rho_k)(\mathbf{x}^{(k)}, \mathbf{u}^{(k)})$$

until: stopping criterion is satisfied.

\ < ___о пті

References

- H. Bauschke and P. L. Combettes. "Convex Analysis and Monotone Operator Theory in Hilbert Spaces". Springer, 2011.
- A. Chambolle and T. Pock. "A first-order primal-dual algorithm for convex problems with applications to imaging". Journal of mathematical imaging and vision 40.1 (2011): 120-145.
- P. L. Combettes and J.-C. Pesquet. "Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators". Set-Valued and variational analysis 20.2 (2012): 307-330.
- Peijun Chen, Jianguo Huang, and Xiaoqun Zhang. "A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration." Inverse Problems 29.2 (2013): 025011.
- Laurent Condat. "A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms." Journal of optimization theory and applications 158.2 (2013): 460-479.
- Bang Công Vũ. "A splitting algorithm for dual monotone inclusions involving cocoercive operators." Advances in Computational Mathematics 38.3 (2013): 667-681.