An Introduction to Non-smooth Optimization

Lecture 03 - Proximal Gradient Descent

Jingwei LIANG

Institute of Natural Sciences, Shanghai Jiao Tong University

Email: optimization.sjtu@gmail.com

Office: Room 355, No. 6 Science Building

We have seen two problems

Non-negative least square (NLS)

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 \quad \text{such that} \quad \boldsymbol{x_i} \geq 0, \boldsymbol{i} = 1, 2, ..., \boldsymbol{n}.$$

Sparse logistic regression

$$\min_{(\mathbf{x},\mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}} \ \mu \|\mathbf{x}\|_1 + \frac{1}{m} \sum\nolimits_{i=1}^m \log \left(1 + \mathrm{e}^{-b_i(\mathbf{x}^\mathsf{T} \mathbf{a}_i + \mathbf{y})}\right).$$

We have seen two problems

Non-negative least square (NLS)

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 \quad \text{such that} \quad \boldsymbol{x}_i \geq 0, i = 1, 2, ..., n.$$

Sparse logistic regression

$$\min_{(\mathbf{x},\mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}} \ \mu \|\mathbf{x}\|_1 + \frac{1}{m} \sum\nolimits_{i=1}^m \log \left(1 + \mathrm{e}^{-b_i(\mathbf{x}^\mathsf{T} \mathbf{a}_i + \mathbf{y})}\right).$$

Let $S = \{ \mathbf{x} \in \mathbb{R}^n : x_i \ge 0, i = 1, 2, ..., n \}$ and define

$$\iota_{\mathcal{S}}(\mathbf{x}) = \begin{cases} 0: \ \mathbf{x} \in \mathcal{S}, \\ +\infty: \ \mathbf{x} \notin \mathcal{S}. \end{cases}$$

The NLS problem can be equivalently written as

$$\min_{\mathbf{x} \in \mathbb{R}^n} \iota_{\mathsf{S}}(\mathbf{x}) + \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2.$$

We have seen two problems

Non-negative least square (NLS)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2$$
 such that $x_i \ge 0, i = 1, 2, ..., n$.

Sparse logistic regression

$$\min_{(\mathbf{x},\mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}} \ \mu \|\mathbf{x}\|_1 + \frac{1}{m} \sum\nolimits_{i=1}^m \log \left(1 + \mathrm{e}^{-b_i(\mathbf{x}^\mathsf{T} \mathbf{a}_i + \mathbf{y})}\right).$$

Problem - Non-smooth optimization problem

Let $F, R \in \Gamma_0(\mathbb{R}^n)$, consider

$$\min_{\mathbf{x} \in \mathbb{R}^n} \Big\{ \Phi(\mathbf{x}) \stackrel{ ext{def}}{=} \mathsf{F}(\mathbf{x}) + \mathsf{R}(\mathbf{x}) \Big\},$$

with

F: smooth differentiable with ∇F being L-Lipschitz continuous.

R: non-smooth with proximal mapping easy to compute.

We have seen two problems

Non-negative least square (NLS)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2$$
 such that $x_i \ge 0, i = 1, 2, ..., n$.

■ Sparse logistic regression

$$\min_{(\mathbf{x},\mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}} \ \mu \|\mathbf{x}\|_1 + \frac{1}{m} \sum\nolimits_{i=1}^m \log \left(1 + \mathrm{e}^{-b_i(\mathbf{x}^\mathsf{T} \mathbf{a}_i + \mathbf{y})}\right).$$

Proposition - Optimality condition

Suppose $zer(\nabla F + \partial R)$ is non-empty, and let $\mathbf{x}^* \in zer(\nabla F + \partial R)$. Then

$$\mathbf{0} \in \partial F(\mathbf{x}^{\star}) + \partial R(\mathbf{x}^{\star}).$$

Outline

Gradient descent

2 Projected gradient descent

3 Proximal gradient descent

4 Convergence analysis

Problem - Unconstrained smooth optimization

Consider minimizing

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}),$$

where $F: \mathbb{R}^n \to \mathbb{R}$ is proper convex and smooth differentiable.

Assumptions:

■ $\nabla F(\mathbf{x})$ is *L*-Lipschitz continuous for some L>0

$$\|\nabla F(\mathbf{x}) - \nabla F(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\|.$$

■ Set of minimizers is non-empty, i.e. $\operatorname{Argmin}(F) \neq \emptyset$.

NB: $C_L^1(\mathbb{R}^n)$ — proper convex functions with L-Lipschitz (with $0 < L < +\infty$) continuous gradient on \mathbb{R}^n .

Gradient descent

Algorithm - Gradient descent

initial: $\mathbf{x}^{(0)} \in \text{dom}(F)$;

repeat:

- 1. Choose step-size $\gamma_k > 0$
- 2. Update $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \gamma_k \nabla F(\mathbf{x}^{(k)})$

until: stopping criterion is satisfied.

Stopping criterion: $\epsilon > 0$ is the tolerance,

- Function value: $F(\mathbf{x}^{(k+1)}) F(\mathbf{x}^{(k)}) \le \epsilon$.
- Sequence: $\|\mathbf{x}^{(k+1)} \mathbf{x}^{(k)}\| \le \epsilon$.
- Optimality condition: $\|\nabla F(\mathbf{x}^{(k)})\| \leq \epsilon$.

Projected gradient descent

Constrained smooth optimization

Problem

Problem - Constrained smooth optimization

Let $S \subset \mathbb{R}^n$ be closed and convex and $F \in C^1_L(\mathbb{R}^n)$,

 $\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) \quad \text{such that} \quad \boldsymbol{x} \in S.$

Projection operator

Projection of **y** onto *S*:

$$\min_{\boldsymbol{x} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Definition - Projection

Projection mapping onto a set is defined by

$$\mathcal{P}_{S}(\mathbf{y}) \stackrel{\text{def}}{=} \operatorname{argmin}_{\mathbf{x} \in S} \|\mathbf{x} - \mathbf{y}\|.$$

The projection is unique for closed and convex, and S

$$\mathcal{P}_{\mathtt{S}}(\textbf{y}) \in \mathtt{S} \quad \mathrm{and} \quad \forall \textbf{x} \in \mathtt{S} \qquad \langle \textbf{x} - \mathcal{P}_{\mathtt{S}}(\textbf{y}) \: | \: \textbf{y} - \mathcal{P}_{\mathtt{S}}(\textbf{y}) \rangle \leq 0.$$

Projected gradient descent

Algorithm - Projected Gradient descent

initial: $\mathbf{x}^{(0)} \in \text{dom}(F)$;

repeat:

- 1. Choose step-size $\gamma_k > 0$
- **2.** GD: $\mathbf{x}^{(k+1/2)} = \mathbf{x}^{(k)} \gamma_k \nabla F(\mathbf{x}^{(k)})$
- **3.** Projection: $\mathbf{x}^{(k+1)} = \mathcal{P}_{S}(\mathbf{x}^{(k+1/2)})$

until: stopping criterion is satisfied.

In a compact form

$$\mathbf{x}^{(k+1)} = \mathcal{P}_{\mathsf{S}}(\mathbf{x}^{(k)} - \gamma_{\mathsf{k}} \nabla \mathsf{F}(\mathbf{x}^{(k)})).$$

■ The same as gradient descent, only one parameter which is γ_k .

Proximal gradient descent

Proximal mapping and algorithm

From projection to proximal mapping

Previously

$$\mathcal{P}_{S}(\boldsymbol{y}) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathrm{argmin}_{\boldsymbol{x} \in S} \, \|\boldsymbol{x} - \boldsymbol{y}\|.$$

From projection to proximal mapping

Previously

$$\mathcal{P}_{S}(\boldsymbol{y}) \stackrel{\text{def}}{=} \operatorname{argmin}_{\boldsymbol{x} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|.$$

The following are equivalent: $\iota_{S}(\mathbf{x}) \in \Gamma_{0}(\mathbb{R}^{n})$ for closed convex S

$$\begin{aligned} \min_{\mathbf{x} \in S} \ \|\mathbf{x} - \mathbf{y}\| &\iff & \min_{\mathbf{x} \in S} \ \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 \\ &\iff & \min_{\mathbf{x} \in \mathbb{R}^n} \ \iota_{S}(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2. \end{aligned}$$

From projection to proximal mapping

Previously

$$\mathcal{P}_{S}(\boldsymbol{y}) \stackrel{\text{def}}{=} \operatorname{argmin}_{\boldsymbol{x} \in S} \|\boldsymbol{x} - \boldsymbol{y}\|.$$

The following are equivalent: $\iota_{S}(\mathbf{x}) \in \Gamma_{0}(\mathbb{R}^{n})$ for closed convex S

$$\min_{\mathbf{x} \in S} \|\mathbf{x} - \mathbf{y}\| \iff \min_{\mathbf{x} \in S} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^{2}
\iff \min_{\mathbf{x} \in \mathbb{R}^{n}} \iota_{S}(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^{2}.$$

Given any $R(\mathbf{x}) \in \Gamma_0(\mathbb{R}^n)$

$$\min_{\mathbf{x} \in \mathbb{R}^n} R(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

Proximal mapping

Definition - Proximal mapping

The proximal mapping (or proximity operator) of a function $R \in \Gamma_0(\mathbb{R}^n)$ is defined by

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) \stackrel{\text{def}}{=} \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} \gamma R(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

Proximal mapping

9/18

Definition - Proximal mapping

The proximal mapping (or proximity operator) of a function $R \in \Gamma_0(\mathbb{R}^n)$ is defined by

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) \stackrel{\scriptscriptstyle \operatorname{def}}{=} \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} \gamma R(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

 $ightharpoonup \operatorname{prox}_{\gamma R}(\mathbf{y})$ is unique for $R \in \Gamma_0(\mathbb{R}^n)$.

Proximal mapping

Definition - Proximal mapping

The proximal mapping (or proximity operator) of a function $R \in \Gamma_0(\mathbb{R}^n)$ is defined by

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) \stackrel{\text{def}}{=} \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} \gamma R(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2.$$

- lacksquare $\operatorname{prox}_{\gamma R}(\mathbf{y})$ is unique for $R \in \Gamma_0(\mathbb{R}^n)$.
- Alternative characterization let $\mathbf{x} \stackrel{\text{\tiny def}}{=} \operatorname{prox}_{\gamma R}(\mathbf{y})$,

$$\begin{split} \mathbf{0} &\in \gamma \partial \mathbf{R}(\mathbf{x}) + \mathbf{x} - \mathbf{y} &\iff \mathbf{y} - \mathbf{x} \in \gamma \partial \mathbf{R}(\mathbf{x}) \\ &\iff \mathbf{y} \in (\mathbf{Id} + \gamma \partial \mathbf{R})(\mathbf{x}) \\ &\iff \mathbf{x} = (\mathbf{Id} + \gamma \partial \mathbf{R})^{-1}(\mathbf{y}). \end{split}$$

■ $(Id + \gamma \partial R)^{-1}$ is called the **resolvent** of $\gamma \partial R$.

Projection $R(\mathbf{x}) = \iota_{S}(\mathbf{x})$, then

$$\partial \iota_{\mathtt{S}}(\mathbf{x}) = \mathcal{N}_{\mathtt{S}}(\mathbf{x}) = \big\{\mathbf{g} \ : \ \langle \mathbf{g} \ | \ \mathbf{u} - \mathbf{x} \rangle \leq 0, \ \forall \mathbf{u} \in \mathtt{S} \big\}$$

and

$$\mathcal{P}_{\mathsf{S}}(\mathbf{y}) = (\mathbf{Id} + \mathcal{N}_{\mathsf{S}})^{-1}(\mathbf{y}).$$

Projection $R(\mathbf{x}) = \iota_{S}(\mathbf{x})$, then

$$\partial \iota_{\mathcal{S}}(\mathbf{x}) = \mathcal{N}_{\mathcal{S}}(\mathbf{x}) = \left\{ \mathbf{g} : \langle \mathbf{g} \mid \mathbf{u} - \mathbf{x} \rangle \le 0, \ \forall \mathbf{u} \in \mathcal{S} \right\}$$

and

$$\mathcal{P}_{\text{S}}(\textbf{y}) = (\textbf{Id} + \mathcal{N}_{\text{S}})^{-1}(\textbf{y}).$$

Examples

■ Hyperplane: $S = \{x : a^Tx = b\}, a \neq 0$

$$\mathcal{P}_{S}(\mathbf{y}) = \mathbf{y} + \frac{b - \mathbf{a}^{\mathsf{T}} \mathbf{y}}{\|\mathbf{a}\|^{2}} \mathbf{a}.$$

■ Affine subspace: $S = \{x : Ax = b\}$ with $A \in \mathbb{R}^{m \times n}$, rank(A) = m < n

$$\mathcal{P}_{\mathsf{S}}(\mathbf{y}) = \mathbf{y} + \mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}(\mathbf{b} - \mathbf{A}\mathbf{y}).$$

■ Nonnegative orthant: $S = \mathbb{R}^n_+$

$$\mathcal{P}_{S}(\mathbf{y}) = (\max\{0, y_i\})_{i}.$$

Quadratic function $R(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} + \mathbf{b}^\mathsf{T}\mathbf{x} + c$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ being symmetric and positive semi-definite

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = (\mathbf{Id} + \gamma \mathbf{A})^{-1} (\mathbf{y} - \gamma \mathbf{b}).$$

Quadratic function $R(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x} + c$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ being symmetric and positive semi-definite

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = (\mathbf{Id} + \gamma \mathbf{A})^{-1} (\mathbf{y} - \gamma \mathbf{b}).$$

Soft-threshold: R(x) = |x|,

$$\operatorname{prox}_{\gamma R}(\mathsf{y}) = \mathcal{T}_{\gamma}(\mathsf{y}) = \begin{cases} \mathsf{y} - \gamma : \mathsf{y} > \gamma, \\ 0 : \mathsf{y} \in [-\gamma, \gamma], \\ \mathsf{y} + \gamma : \mathsf{y} < -\gamma. \end{cases}$$

Quadratic function $R(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} + \mathbf{b}^\mathsf{T}\mathbf{x} + c$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ being symmetric and positive semi-definite

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = (\mathbf{Id} + \gamma \mathbf{A})^{-1} (\mathbf{y} - \gamma \mathbf{b}).$$

Soft-threshold: R(x) = |x|,

$$\operatorname{prox}_{\gamma R}(\mathsf{y}) = \mathcal{T}_{\gamma}(\mathsf{y}) = \begin{cases} \mathsf{y} - \gamma : \mathsf{y} > \gamma, \\ 0 : \mathsf{y} \in [-\gamma, \gamma], \\ \mathsf{y} + \gamma : \mathsf{y} < -\gamma. \end{cases}$$

Euclidean norm $R(\mathbf{x}) = \|\mathbf{x}\|_2$

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = \begin{cases} (1 - \frac{\gamma}{\|\mathbf{y}\|})\mathbf{y} : \|\mathbf{y}\| > \gamma, \\ \mathbf{0} : \text{o.w.} \end{cases}$$

Quadratic function $R(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{A}\mathbf{x} + \mathbf{b}^\mathsf{T}\mathbf{x} + c$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ being symmetric and positive semi-definite

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = (\mathbf{Id} + \gamma \mathbf{A})^{-1} (\mathbf{y} - \gamma \mathbf{b}).$$

Soft-threshold: R(x) = |x|,

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = \mathcal{T}_{\gamma}(\mathbf{y}) = \begin{cases} \mathbf{y} - \gamma : \mathbf{y} > \gamma, \\ 0 : \mathbf{y} \in [-\gamma, \gamma], \\ \mathbf{y} + \gamma : \mathbf{y} < -\gamma. \end{cases}$$

Euclidean norm $R(\mathbf{x}) = \|\mathbf{x}\|_2$

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = \begin{cases} (1 - \frac{\gamma}{\|\mathbf{y}\|})\mathbf{y} : \|\mathbf{y}\| > \gamma, \\ \mathbf{0} : \text{o.w.} \end{cases}$$

Nuclear norm
$$R(\mathbf{x}) = \sum_i \mathbf{S}_i$$
, let $\mathbf{y} = \mathbf{U}\mathbf{S}\mathbf{V}^T \in \mathbb{R}^{m \times n}$

$$\operatorname{prox}_{\gamma R}(\mathbf{y}) = \mathbf{U}\mathcal{T}_{\gamma}(\mathbf{S})\mathbf{V}^T.$$

$$\begin{aligned} \text{Quadratic perturbation } \textit{H}(\mathbf{x}) = \textit{R}(\mathbf{x}) + \frac{\alpha}{2}\|\mathbf{x}\|^2 + \langle \mathbf{x} \mid \mathbf{u} \rangle + b, \ \alpha \geq 0 \\ & \text{prox}_{\mathsf{H}}(\mathbf{y}) = \text{prox}_{\mathsf{R}/(\alpha+1)} \left(\frac{\mathbf{y} - \mathbf{u}}{\alpha+1}\right). \end{aligned}$$

$$\begin{aligned} \text{Quadratic perturbation } \textit{H}(\mathbf{x}) = \textit{R}(\mathbf{x}) + \frac{\alpha}{2}\|\mathbf{x}\|^2 + \langle \mathbf{x} \mid \mathbf{u} \rangle + b, \ \alpha \geq 0 \\ & \text{prox}_{\textit{H}}(\mathbf{y}) = \text{prox}_{\textit{R}/(\alpha+1)} \Big(\frac{\mathbf{y} - \mathbf{u}}{\alpha+1} \Big). \end{aligned}$$

Translation
$$H(\mathbf{x}) = R(\mathbf{x} - \mathbf{z})$$

$$prox_H(\mathbf{y}) = \mathbf{z} + prox_R(\mathbf{y} - \mathbf{z}).$$

Quadratic perturbation
$$H(\mathbf{x}) = R(\mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x}\|^2 + \langle \mathbf{x} \mid \mathbf{u} \rangle + b, \ \alpha \geq 0$$

$$\operatorname{prox}_{H}(\mathbf{y}) = \operatorname{prox}_{R/(\alpha+1)} \left(\frac{\mathbf{y} - \mathbf{u}}{\alpha+1} \right).$$

Translation
$$H(\mathbf{x}) = R(\mathbf{x} - \mathbf{z})$$

$$\operatorname{prox}_{\mathcal{H}}(\mathbf{y}) = \mathbf{z} + \operatorname{prox}_{\mathcal{R}}(\mathbf{y} - \mathbf{z}).$$

Scaling
$$H(\mathbf{x}) = R(\mathbf{x}/\rho)$$

$$\operatorname{prox}_{\mathsf{H}}(\mathbf{y}) = \rho \operatorname{prox}_{\mathsf{R}/\rho^2}(\mathbf{y}/\rho).$$

Quadratic perturbation
$$H(\mathbf{x}) = R(\mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x}\|^2 + \langle \mathbf{x} \mid \mathbf{u} \rangle + b, \ \alpha \geq 0$$

$$\operatorname{prox}_{H}(\mathbf{y}) = \operatorname{prox}_{R/(\alpha+1)} \left(\frac{\mathbf{y} - \mathbf{u}}{\alpha+1} \right).$$

Translation
$$H(\mathbf{x}) = R(\mathbf{x} - \mathbf{z})$$

$$\operatorname{prox}_{H}(\mathbf{y}) = \mathbf{z} + \operatorname{prox}_{R}(\mathbf{y} - \mathbf{z}).$$

Scaling
$$H(\mathbf{x}) = R(\mathbf{x}/\rho)$$

$$\operatorname{prox}_{\mathsf{H}}(\mathbf{y}) = \rho \operatorname{prox}_{\mathsf{R}/\rho^2}(\mathbf{y}/\rho).$$

Reflection
$$H(\mathbf{x}) = R(-\mathbf{x})$$

$$\operatorname{prox}_H(\boldsymbol{y}) = -\operatorname{prox}_R(-\boldsymbol{y}).$$

Quadratic perturbation
$$H(\mathbf{x}) = R(\mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x}\|^2 + \langle \mathbf{x} \mid \mathbf{u} \rangle + b, \ \alpha \geq 0$$

$$\operatorname{prox}_H(\mathbf{y}) = \operatorname{prox}_{R/(\alpha+1)} \left(\frac{\mathbf{y} - \mathbf{u}}{\alpha+1} \right).$$

Translation
$$H(\mathbf{x}) = R(\mathbf{x} - \mathbf{z})$$

$$\operatorname{prox}_{H}(\mathbf{y}) = \mathbf{z} + \operatorname{prox}_{R}(\mathbf{y} - \mathbf{z}).$$

Scaling
$$H(\mathbf{x}) = R(\mathbf{x}/\rho)$$

$$\operatorname{prox}_{\mathsf{H}}(\mathbf{y}) = \rho \operatorname{prox}_{\mathsf{R}/\rho^2} \big(\mathbf{y}/\rho\big).$$

Reflection
$$H(\mathbf{x}) = R(-\mathbf{x})$$

$$\operatorname{prox}_{H}(\mathbf{y}) = -\operatorname{prox}_{R}(-\mathbf{y}).$$

Composition $H = R \circ K$ with K being bijective bounded linear mapping such that $K^{-1} = K^*$, $\operatorname{prox}_H(\mathbf{y}) = K^* \operatorname{prox}_R(K\mathbf{y})$.

Proximal gradient descent

Problem - Non-smooth optimization

Let $R \in \Gamma_0(\mathbb{R}^n)$ and $F \in \mathcal{C}^1_L(\mathbb{R}^n)$,

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}R(\boldsymbol{x})+F(\boldsymbol{x}).$$

Proximal gradient descent

Problem - Non-smooth optimization

Let
$$R \in \Gamma_0(\mathbb{R}^n)$$
 and $F \in C^1_L(\mathbb{R}^n)$,

$$\min_{\mathbf{x}\in\mathbb{R}^n} R(\mathbf{x}) + F(\mathbf{x}).$$

Algorithm - Proximal Gradient descent

initial: $\mathbf{x}^{(0)} \in \text{dom}(F)$;

repeat:

- 1. Choose step-size $\gamma_k > 0$
- **2.** GD: $\mathbf{x}^{(k+1/2)} = \mathbf{x}^{(k)} \gamma_k \nabla F(\mathbf{x}^{(k)})$
- 3. Projection: $\mathbf{x}^{(k+1)} = \operatorname{prox}_{\gamma_k R}(\mathbf{x}^{(k+1/2)})$

until: stopping criterion is satisfied.

In a compact form

$$\mathbf{x}^{(k+1)} = \text{prox}_{\gamma_k R} (\mathbf{x}^{(k)} - \gamma_k \nabla F(\mathbf{x}^{(k)})).$$

Convergence analysis

Fixed-point iteration perspective

Optimality condition

13/18

Problem - Non-smooth optimization problem

Let $F, R \in \Gamma_0(\mathbb{R}^n)$, consider

$$\min_{\mathbf{x} \in \mathbb{R}^n} \Big\{ \Phi(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \mathbf{F}(\mathbf{x}) + \mathbf{R}(\mathbf{x}) \Big\},$$

with

F: smooth differentiable with ∇F being L-Lipschitz continuous.

non-smooth with proximal mapping easy to compute.

Optimality condition

13/18

Problem - Non-smooth optimization problem

Let $F, R \in \Gamma_0(\mathbb{R}^n)$, consider

$$\min_{\mathbf{x} \in \mathbb{R}^n} \Big\{ \Phi(\mathbf{x}) \stackrel{\text{def}}{=} F(\mathbf{x}) + R(\mathbf{x}) \Big\},$$

with

F: smooth differentiable with ∇F being L-Lipschitz continuous.

non-smooth with proximal mapping easy to compute.

Proposition - Optimality condition

Suppose $zer(\nabla F + \partial R)$ is non-empty, and let $\mathbf{x}^* \in zer(\nabla F + \partial R)$. Then

$$\mathbf{0} \in \nabla F(\mathbf{x}^{\star}) + \partial R(\mathbf{x}^{\star}).$$

Cocoercive operators

Definition - Cocoercive operator

Let S be a non-empty subset of \mathbb{R}^n , $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ and $\beta > 0$. Then \mathcal{B} is β -cocoercive if

$$(\forall \mathbf{x} \in S)(\mathbf{y} \in S) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y}) \rangle \ge \beta \|\mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y})\|^2.$$

Cocoercive operators

14/18

Definition - Cocoercive operator

Let S be a non-empty subset of \mathbb{R}^n , $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ and $\beta > 0$. Then \mathcal{B} is β -cocoercive if

$$(\forall \mathbf{x} \in S)(\mathbf{y} \in S) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y}) \rangle \ge \beta \|\mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y})\|^2.$$

Theorem - Cocoercivity and Lipschitz continuity

Let S be a non-empty subset of \mathbb{R}^n , $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ and $\beta > 0$. If \mathcal{B} is β -cocoercive, then

$$(\forall \mathbf{x} \in S)(\mathbf{y} \in S) \quad \|\mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y})\| \leq \frac{1}{\beta}\|\mathbf{x} - \mathbf{y}\|.$$

Cocoercivity implies Lipschitz continuity, the reverse in general is not true.

Cocoercive operators

14/18

Definition - Cocoercive operator

Let S be a non-empty subset of \mathbb{R}^n , $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ and $\beta > 0$. Then \mathcal{B} is β -cocoercive if

$$(\forall \mathbf{x} \in S)(\mathbf{y} \in S) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y}) \rangle \ge \beta \|\mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y})\|^2.$$

Theorem - Cocoercivity and Lipschitz continuity

Let S be a non-empty subset of \mathbb{R}^n , $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ and $\beta > 0$. If \mathcal{B} is β -cocoercive, then

$$(\forall \mathbf{x} \in S)(\mathbf{y} \in S) \quad \|\mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y})\| \leq \frac{1}{\beta}\|\mathbf{x} - \mathbf{y}\|.$$

Cocoercivity implies Lipschitz continuity, the reverse in general is not true.

Theorem - [Baillon-Haddad '77]

For $F \in C^1_L(\mathbb{R}^n)$, its gradient ∇F is $\frac{1}{L}$ -cocoercive.

Cocoercive operators

14/18

Definition - Cocoercive operator

Let S be a non-empty subset of \mathbb{R}^n , $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ and $\beta > 0$. Then \mathcal{B} is β -cocoercive if

$$(\forall \mathbf{x} \in S)(\mathbf{y} \in S) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y}) \rangle \ge \beta \|\mathcal{B}(\mathbf{x}) - \mathcal{B}(\mathbf{y})\|^2.$$

Proposition - Cocoercivity and non-expansiveness

Let $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$, then

- \blacksquare $\beta \mathcal{B}$ is firmly non-expansive.
- $\operatorname{Id} \gamma \mathcal{B}$ is $\frac{\gamma}{2\beta}$ -averaged non-expansive for $\gamma \in]0, 2\beta[$.

Definition - Resolvent

Let $\mathcal{A}:\mathbb{R}^n
ightrightarrows \mathbb{R}^n$ be monotone. The resolvent of \mathcal{A} is

$$\mathcal{J}_{\mathcal{A}} = (\mathbf{Id} + \mathcal{A})^{-1}.$$

Definition - Resolvent

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be monotone. The resolvent of \mathcal{A} is

$$\mathcal{J}_{\mathcal{A}} = (\operatorname{Id} + \mathcal{A})^{-1}.$$

Example - Proximal mapping

Let $R \in \Gamma_0(\mathbb{R}^n)$ and $\gamma > 0$. Then

$$\mathcal{J}_{\gamma\partial R} = \operatorname{prox}_{\gamma R}.$$

15/18

15/18

Definition - Resolvent

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be monotone. The resolvent of \mathcal{A} is

$$\mathcal{J}_{\mathcal{A}} = (\operatorname{Id} + \mathcal{A})^{-1}.$$

Theorem - Monotonicity and firmly non-expansiveness

Let S be a nonempty subset of \mathbb{R}^n , let $\mathcal{F}: S \to \mathbb{R}^n$ and set $\mathcal{A} = \mathcal{F}^{-1} - Id$. Then the following holds

- $\mathcal{F} = \mathcal{J}_{A}$.
- \blacksquare \mathcal{F} is firmly non-expansive if and only if \mathcal{A} is monotone.
- lacksquare \mathcal{F} is firmly non-expansive and $S = \mathbb{R}^n$ if and only if \mathcal{A} is maximally monotone.

15/18

Definition - Resolvent

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be monotone. The resolvent of \mathcal{A} is

$$\mathcal{J}_{\mathcal{A}} = (\operatorname{Id} + \mathcal{A})^{-1}.$$

Corollary

Let $\mathcal{F}: \mathbb{R}^n \to \mathbb{R}^n$. Then \mathcal{F} is firmly non-expansive if and only if it is the resolvent of a maximally monotone operator $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$.

Fixed-point characterization

16/18

Definition - Monotone inclusion problem

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximal monotone and $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$. Then monotone inclusion problem associated to $\mathcal{A} + \mathcal{B}$ reads

 $\mbox{find} \quad \boldsymbol{x} \in \mathbb{R}^n \quad \mbox{such that} \quad \boldsymbol{0} \in \mathcal{A}(\boldsymbol{x}) + \mathcal{B}(\boldsymbol{x}).$

Fixed-point characterization

Definition - Monotone inclusion problem

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximal monotone and $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$. Then monotone inclusion problem associated to $\mathcal{A} + \mathcal{B}$ reads

find
$$\mathbf{x} \in \mathbb{R}^n$$
 such that $\mathbf{0} \in \mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x})$.

Definition - Forward-Backward splitting

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximal monotone and $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$. Let \mathbf{x} be such that $\mathbf{0} \in \mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x})$ and $\gamma > 0$. Then

$$\begin{split} \mathbf{0} &\in \mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x}) &\iff \mathbf{0} \in \gamma \mathcal{A}(\mathbf{x}) + \gamma \mathcal{B}(\mathbf{x}) \\ &\iff -\gamma \mathcal{B}(\mathbf{x}) \in \gamma \mathcal{A}(\mathbf{x}) \\ &\iff \mathbf{x} - \gamma \mathcal{B}(\mathbf{x}) \in \mathbf{x} + \gamma \mathcal{A}(\mathbf{x}) \\ &\iff \mathbf{x} = (\mathbf{Id} + \gamma \mathcal{A})^{-1} (\mathbf{Id} - \gamma \mathcal{B})(\mathbf{x}) \end{split}$$

Fixed-point characterization

16/18

Definition - Monotone inclusion problem

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximal monotone and $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$. Then monotone inclusion problem associated to $\mathcal{A} + \mathcal{B}$ reads

find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{0} \in \mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x})$.

Proposition - Fixed-point operator

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximal monotone and $\mathcal{B}: \mathbb{R}^n \to \mathbb{R}^n$. Set

$$\mathcal{F}_{\mathcal{A},\mathcal{B}} = \mathcal{J}_{\mathcal{A}} \circ (\operatorname{Id} - \mathcal{B}).$$

Suppose $\mathcal B$ is β -cocoercive for some $\beta>0$ and that $\gamma\in]0,2\beta[$. Let

$$\alpha = \frac{2\beta}{4\beta - \gamma},$$

then $\mathcal{F}_{\gamma \mathcal{A}, \gamma \mathcal{B}}$ is α -averaged non-expansive.

Convergence

17/18

Theorem - Convergence with constant step-size

For proximal gradient descent, let $R \in \Gamma_0(\mathbb{R}^n)$ and $F \in C^1(\mathbb{R}^n)$. Let

$$\gamma_{\mathbf{k}} \equiv \gamma \in]0, 2/\mathsf{L}[.$$

Then

 $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ converges to a point \mathbf{x}^* in $\operatorname{zer}(\partial R + \nabla F)$.

Theorem - Convergence speed

With the above convergence result,

Sequence

$$\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\| = o\left(\frac{1}{\sqrt{k}}\right).$$

Objective function

$$(R+F)(\boldsymbol{x}^{(k)}) - (R+F)(\boldsymbol{x}^{\star}) = o\left(\frac{1}{k}\right).$$

References

- Patrick L. Combettes, and Valérie R. Wajs. "Signal recovery by proximal forward-backward splitting." Multiscale modeling & simulation 4.4 (2005): 1168-1200.
- Cesare Molinari, Jingwei Liang, and Jalal Fadili. "Convergence rates of Forward-Douglas-Rachford splitting method." Journal of Optimization Theory and Applications 182.2 (2019): 606-639.
- Jingwei Liang, Jalal Fadili, and Gabriel Peyré. "Convergence rates with inexact non-expansive operators." Mathematical Programming 159.1 (2016): 403-434.
- A. Beck: First-order methods in optimization, Vol. 25. SIAM, 2017.
- H. H. Bauschke and P. L. Combettes: Convex analysis and monotone operator theory in Hilbert spaces, Vol. 408. New York: Springer, 2011.