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Previously Ny=zs0TU

We have seen two problems
m Non-negative least square (NLS)

min ||Ax —y||> such that x >0,i=1,2,...,n.
XER"

m Sparse logistic regression
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Previously

We have seen two problems

m Non-negative least square (NLS)

min ||Ax —y|* such that x >0,i=1,2,..,n.

XERN
m Sparse logistic regression

min  plx||; + % Z,m:1 log (1 + e*bi(xTarH’)).

(x,y)ERTXR

letS={xe€R" : x>0, i=1,2,...,n} and define
x) 0: xe8,
ts(x) =
° too: X¢S.
The NLS problem can be equivalently written as

. ull2
min s(x) + [JAx —y|".
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Previously A=

We have seen two problems
m Non-negative least square (NLS)

min [|Ax —y|> such that x >0,i=1,2,.
xeR"

m Sparse logistic regression

mi LS + e bi¥aity)
X . 1 1 '
(x,y)eﬁxm plixly m Z,:1 Og( e )

Problem - Non-smooth optimization problem
Let F,R € TH(R"), consider

min{@ F(x) + R(x )}

xER"
with
F: smooth differentiable with VF being L-Lipschitz continuous.
R: non-smooth with proximal mapping easy to compute.
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Previously STNFFESITL

We have seen two problems
m Non-negative least square (NLS)

min ||Ax —y||> such that x >0,i=1,2,...,n.
XERN
m Sparse logistic regression

; 1 m —bi(x"aj+y)
i T 1),

Proposition - Optimality condition

Suppose zer(VF + 0R) is non-empty, and let x* € zer(VF + 0R). Then
0 € OF(x*) + OR(x*).
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Outline

@ Gradient descent

® Projected gradient descent

® Proximal gradient descent

@ Convergence analysis



Problem IS e

Problem - Unconstrained smooth optimization

Consider minimizing

in F(x
}genRrg(),

where F : R" — R is proper convex and smooth differentiable.

Assumptions:
— \ ) m VF(x) is L-Lipschitz continuous for some L > 0
) [VF(x) = VF(y)] < Lix—vl.
/ L@ m Set of minimizers is non-empty, i.e. Argmin(F) # ().
kv NB: C} (R") — proper convex functions with L-Lipschitz
— (with 0 < L < 400) continuous gradient on R".
\—/

Gradient descent 3/18




Gradient descent _ rEsnd

Algorithm - Gradient descent
initial: x(%) € dom(F);
repeat:

1. Choose step-size 7, > 0
2. Update xt1) = x(K) — 4, vF(x*))
until: stopping criterion is satisfied.

Stopping criterion: € > 0 is the tolerance,
m Function value: F(x*+1)) — F(x®)) < ¢,
m Sequence: [xk+1) — x| <.
m Optimality condition: | VF(x®))[ <e.

Gradient descent 0e 000 00000
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Projected gradient descent

Constrained smooth optimization



Problem P

Problem - Constrained smooth optimization
Let S C R" be closed and convex and F € C}(R"),

min F(x) such that x € S.
XER"

Projected gradient descent 00 @00 00000 5/18




Projection operator PN

Projection of y onto S:
. _ - y
min [x —y|.
x

Definition - Projection
Projection mapping onto a set is defined by | / b

Ps(y) = argmings [x — |- N /

X
T \

The projection is unique for closed and convex, and S
Ps(y) €S and VYxeS (x —Ps(y) |y — Ps(y)) <0.

Projected gradient descent 00 080 00000 ©000O © 6/18



Projected gradient descent ATNF=zsmd

Algorithm - Projected Gradient descent

initial: x(©) ¢ dom(F);
repeat:

1. Choose step-size vy > 0
2. GD: x(k+1/2) = x() — 4, F(x*))
3. Projection: x(k+1) = Py (x(k+1/2)

until: stopping criterion is satisfied.

In a compact form
X(k+1) = Ps(x(k) — "}/kVF(X(k))).

m The same as gradient descent, only one parameter which is 7.

Projected gradient descent 00 0o 00000 7/18




Proximal gradient descent

Proximal mapping and algorithm



From projection to proximal mapping s

Previously
def .
Ps(y) = argmin, s [x — y|.

Proximal gradient descent ©0000 8/18



From projection to proximal mapping ANEEraTU

Previously
Ps(y) = argmin,cg [x —y].

The following are equivalent: ¢s(x) € I',(R") for closed convex S

. 1 2
min [x —y| <<= min Jlx—y|

. 1 2
X —|IX — .
< min s(x) + S x -yl

Proximal gradient descent ©0000 8/18



From projection to proximal mapping TNErs U

Previously
Ps(y) = argmin,cg [x —y].

The following are equivalent: ¢s(x) € I',(R") for closed convex S

. 1 2
min [x —y| <<= min Jlx—y|

. 1 2
X —|IX — .
< min s(x) + S x -yl

Given any R(x) € I)(R")

. 1 2
R(X) + =[x —y|*.
min R(x) + Zx —y]

Proximal gradient descent ©0000 8/18



Proximal mapping rgzsmd L

Definition - Proximal mapping

The proximal mapping (or proximity operator) of a function R € I\y(R") is defined by

e . 1 2
prox,(y) & argmin,ep, YR(X) + L —y|.

Proximal gradient descent 00 000 08000 ©COOCO © 9/18



Proximal mapping =

/INT=zsuTul 1L

Definition - Proximal mapping

The proximal mapping (or proximity operator) of a function R € I\y(R") is defined by

e . 1 2
prox,(y) & argmin,ep, YR(X) + L —y|.

m prox.q(y) is unique for R € I (R").

Proximal gradient descent 00 000 08000 ©COOCO © 9/18



Proximal mapping P

IN\F7sJTUl 1L

Definition - Proximal mapping

The proximal mapping (or proximity operator) of a function R € I\y(R") is defined by

e . 1 2
Prox.g(y) = argmin,cgs YR(X) + 2 [ — y|".

m prox.q(y) is unique for R € I (R").

m Alternative characterization let x = prox.q(y),
0€YOR(X) +x—y <= y—x¢€vyOR(x)
<= ye€ (d+~0R)(x)
< x=(ld+~OR)"(y).

m (Id + vOR) "1 is called the resolvent of yOR.

Proximal gradient descent 00 000 08000 ©COOCO © 9/18



Examples

Projection R(x) = ¢s(x), then
abs(

and

Proximal gradient descent

={g:(glu—x)<0, ues}

Ps(y) = (1d + Ns)~L(y).

0000
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Examples Ny=zs0TU

Projection R(x) = ¢s(x), then
Ous(x) ={g:(glu—x)<0, ues}

and

Ps(y) = (1d + Ns)~L(y).

Examples
m Hyperplane: S={x:a'x=b}, a #0

b—a'y
|a]?

Ps(y) =y + a.

m Affine subspace: S = {x : Ax = b} withA € R™" rank(A) =m <n
Ps(y) =y +AT(AAT) "1 (b — Ay).

m Nonnegative orthant: § = R’}
Ps(y) = (max{07y,~})‘..

Proximal gradient descent 00800 10/18



Examples R

Quadratic function R(x) = 3x"Ax + b'x + c with A € R"*" being symmetric and positive
semi-definite
prox. q(y) = (Id + A) "' (y — 7b).

Proximal gradient descent co0eco
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Examples STNF=ESITU

Quadratic function R(x) = 3x"Ax + b'x + c with A € R"*" being symmetric and positive
semi-definite
prox. q(y) = (Id + A) "' (y — 7b).

Soft-threshold: R(x) = |x

’

Y=y >,
prOX»yR(Y) = 7jy()/) = 0: y € [_757]5
y+y:ry <—v.
y

/
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Examples ™rrsomuNL

Quadratic function R(x) = 3x"Ax + b'x + c with A € R"*" being symmetric and positive

semi-definite
prox.p(y) = (ld + YA) "Ly — 4b).

Soft-threshold: R(x) = |x

’

Y—=—7:y>17,
prOX»yR(Y) = 7jy()/) = 0: y € [_757]5
y+y:y < -—v.

=gy :lyl >,

0:o.w.

Proximal gradient descent 00800 10/18



Examples ™rrsomuNL

Quadratic function R(x) = 3x"Ax + b'x + c with A € R"*" being symmetric and positive

semi-definite
prox.q(y) = (Id +~A) "' (y — 7b).

Soft-threshold: R(x) = |x

’

Y—=—7:y>17,
prOX»yR(Y) = 7jy()/) = 0: y € [_757]5
y+y:y < -—v.

Euclidean norm R(x) = ||x|,
=gy Iyl >,

0:o.w.

prox.q(y) = {

Nuclear norm R(x) = _.S;, lety = USVT € R™*"
pros a(y) = UT, (S)V'.
10/18
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Calculus STN\FzsITU

Quadratic perturbation H(x) = R(x) + %||x||2 +(x|u)+b, a>0

proxy(Y) = ProXg/(a11) (Zé;ﬁ) .

Proximal gradient descent 00080 11/18



Calculus s —autl

Quadratic perturbation H(x) = R(x) + %||x||2 +{x|uy+b,a>0

proxy(y) = PrOXg/(a+1) (%) .

Translation H(x) = R(x — z)
proxy(y) = z + proxg(y — 2).

Proximal gradient descent 00080 11/18



Calculus TNErsTU
Quadratic perturbation H(x) = R(x) + %||x||2 +{x|uy+b,a>0
proxy(Y) = ProxXg,(at1) (%)

Translation H(x) = R(x — z)
proxy(y) = z + proxgz(y — z).

Scaling H(x) = R(x/p)
proxy(y) = pproxg,,z (v/p).

Proximal gradient descent cooeo 11/18



Calculus
Quadratic perturbation H(x) = R(x) + %||x||2 +{x|uy+b,a>0
proxy(Y) = ProxXg,(at1) (%)

Translation H(x) = R(x — 2)
proxy(y) = z + proxg(y — 2).

Scaling H(x) = R(x/p)
proxy(y) = pproxg, 2 (v/p)-

Reflection H(x) = R(—x)
proxy,(y) = —proxg(—y).
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Calculus
Quadratic perturbation H(x) = R(x) + %||x||2 +{x|uy+b,a>0
proxy(Y) = ProxXg,(at1) (%)

Translation H(x) = R(x — 2)
proxy(y) = z + proxg(y — 2).

Scaling H(x) = R(x/p)
proxy(y) = pproxg, 2 (v/p)-

Reflection H(x) = R(—x)
proxy(y) = —proxg(—y).

Composition H = R o K with K being bijective bounded linear mapping such that K—! = K*,
proxy(y) = K*proxg (Ky).

Proximal gradient descent cooeo 11/18



Proximal gradient descent Ae=rsU

Problem - Non-smooth optimization

LetR € TH(R") and F € C} (R™),

min R(x) + F(x).
xeRn

Proximal gradient descent 00 600 0ooce 12/18




Proximal gradient descent A=l

Problem - Non-smooth optimization

LetR € Iy (R") and F € C}(R"),

in R F(x).
minR(x) + F(x)

Algorithm - Proximal Gradient descent
initial: x(*) € dom(F);
repeat:

1. Choose step-size v > 0
2. GD: x(k+1/2) — x(k) _ 4, VF(x(k)
3. Projection: x(k+1) = prokaR(x("“/?))

until: stopping criterion is satisfied.

In a compact form
xUFD — Prox. q (x(k) — wVF(x®)).

Proximal gradient descent 12/18
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Convergence analysis

Fixed-point iteration perspective



Optimality condition A=l

Problem - Non-smooth optimization problem

Let F,R € TH(R"), consider

in L& (x) 2 F(x) + R(x }
(] S S

with
F: smooth differentiable with VF being L-Lipschitz continuous.
R: non-smooth with proximal mapping easy to compute.

Convergence analysis 00 0000 © 13/18




Optimality condition Agzsmul

Problem - Non-smooth optimization problem

Let F,R € TH(R"), consider

in L& (x) 2 F(x) + R(x }
(] S S

with
F: smooth differentiable with VF being L-Lipschitz continuous.
R: non-smooth with proximal mapping easy to compute.

Proposition - Optimality condition

Suppose zer(VF + OR) is non-empty, and let x* € zer(VF 4 OR). Then
0 € VF(x*) + OR(x™).

Convergence analysis 00 0000 © 13/18




Cocoercive operators A=l

Definition - Cocoercive operator

Let S be a non-empty subset of R"”, B : R™ — R" and 8 > 0. Then B is -cocoercive if
(W EeS)yes) x—y[Bx) —B(y)) > BIBx) - By)|*

Convergence analysis 00 000 00000 08000 © 14/18



Cocoercive operators

M\F=7sITU

Definition - Cocoercive operator

Let S be a non-empty subset of R", 5 : R" — R" and $ > 0. Then B is 5-cocoercive if
(xes)yes) (x—y|Bx) -Bly)) > BlBx) - By)|

Theorem - Cocoercivity and Lipschitz continuity

Let S be a non-empty subset of R”, 5 : R" — R" and 8 > 0. If B is 5-cocoercive, then
1
(vxeS)yes) [Bx)—Bly)|<=lx—yl.

m Cocoercivity implies Lipschitz continuity, the reverse in general is not true.

Convergence analysis 00 000 00000 08000 © 14/18



Cocoercive operators

Definition - Cocoercive operator

Let S be a non-empty subset of R", 5 : R" — R" and $ > 0. Then B is 5-cocoercive if
(xes)yes) (x—y|Bx) -Bly)) > BlBx) - By)|

Theorem - Cocoercivity and Lipschitz continuity

Let S be a non-empty subset of R”, 5 : R" — R" and 8 > 0. If B is 5-cocoercive, then
1
(v es)(yes) [Bx)—By)l<lx—yl.

m Cocoercivity implies Lipschitz continuity, the reverse in general is not true.

‘

Theorem - [

For F € C!(R"), its gradient VF is {-cocoercive.

Convergence analysis 00 000 00000 08000 © 14/18



Cocoercive operators

M\F=7sITU

Definition - Cocoercive operator

Let S be a non-empty subset of R", 5 : R" — R" and $ > 0. Then B is 5-cocoercive if
(xes)yes) (x—y|Bx) -Bly)) > BlBx) - By)|

Proposition - Cocoercivity and non-expansiveness

Let B : R" — R" be S-cocoercive for some 5 > 0, then

m (B is firmly non-expansive.

mid—~Bis gg-averaged non-expansive for v €0, 2/3].

Convergence analysis 00 000 00000 08000 © 14/18



Resolvent of maximal monotone operator A=l

Definition - Resolvent

Let A : R" = R" be monotone. The resolvent of A is
Ja=(d+ A~

Convergence analysis 00 000 00000 00800 © 15/18



Resolvent of maximal monotone operator AL

Definition - Resolvent

Let A : R" = R" be monotone. The resolvent of A is
Ja=(d+ A~

Example - Proximal mapping

LetR € TH(R") and v > 0. Then

JyorR = ProX,p.

Convergence analysis 00 000 00000 00800 O 15/18



Resolvent of maximal monotone operator TN T

Definition - Resolvent

Let A : R" = R" be monotone. The resolvent of A is
Ja=(d+ A~

Theorem - Monotonicity and firmly non-expansiveness

Let S be a nonempty subset of R", let 7 : S — R" and set A = F—! — Id. Then the following
holds

mF= jA.
m F is firmly non-expansive if and only if A is monotone.

m F is firmly non-expansive and S = R" if and only if A is maximally monotone.

Convergence analysis 00 000 00000 00800 © 15/18



Resolvent of maximal monotone operator Ara=rsru L

Definition - Resolvent

Let A : R" = R" be monotone. The resolvent of A is
Ja=(d+ A~

Corollary

Let F : R” — R". Then F is firmly non-expansive if and only if it is the resolvent of a maximally
monotone operator A4 : R" = R".

Convergence analysis 00 000 00000 00800 © 15/18



Fixed-point characterization .

s IMNy=zsotul 1L

Definition - Monotone inclusion problem

Let A : R" = R" be maximal monotone and BB : R" — R" be (3-cocoercive for some 5 > 0.
Then monotone inclusion problem associated to A + B reads

find x € R" such that 0 € A(x) + B(x).

Convergence analysis 00 000 00000 C00eO © 16/18



Fixed-point characterization P

Definition - Monotone inclusion problem

Let A : R” = R" be maximal monotone and 55 : R" — R" be S-cocoercive for some g > 0.
Then monotone inclusion problem associated to A + B reads

find x € R" such that 0 € A(x) + B(x).

Definition - Forward-Backward splitting

Let A : R" = R" be maximal monotone and B : R" — R". Let x be such that 0 € A(x) + B(x)
and v > 0. Then

0 € A(x) + B(x) 0 € yA(x) + vB(x)
—7B(x) € 7 Ax)
x —yB(x) € x + 7 A(x)

x = (id + ~+A) " (1d — 7B)(x)

1eey

Convergence analysis 00 000 00000 C00eO © 16/18



Fixed-point characterization

S INF=rssTul 1L

Definition - Monotone inclusion problem

Let A : R” = R" be maximal monotone and 55 : R" — R" be S-cocoercive for some g > 0.
Then monotone inclusion problem associated to A + B reads

find x € R" such that 0 € A(x) + B(x).

Proposition - Fixed-point operator

Let A : R” = R" be maximal monotone and B : R" — R". Set
Fap=JTao(ld—B).

Suppose B is -cocoercive for some 5 > 0 and that v €]0, 2/3]. Let

then F, 4,5 is a-averaged non-expansive.

Convergence analysis 00 000 00000 C00eO © 16/18



Convergence Agzsmul

Theorem - Convergence with constant step-size
For proximal gradient descent, let R € Ty(R") and F € C} (R"). Let

W =y €]0,2/L[.

Then

] {x(k)}keN converges to a point x* in zer(OR + VF).

Theorem - Convergence speed

With the above convergence result,

m Sequence

X0 —xk=D| = o (ﬁ) '

m Objective function

(R+F)(x9) — (R+F)(x*) = o (i) :

Convergence analysis 00 000 00000 00CO® O 17/18
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