An Introduction to Non-smooth Optimization

Lecture 01 - Mathematical Background

Jingwei LIANG

Institute of Natural Sciences, Shanghai Jiao Tong University

Email: optimization.sjtu@gmail.com Office: Room 355, No. 6 Science Building

Outline

Vector spaces

2 Convex sets

8 Non-expansive operators

4 Fejér monotonicity

6 Convex functions

6 Differentiability

Onvex minimization problem

Vector

$$\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}.$$

The number a_i is called the i'th element/component of the vector **a**.

NB: By default we refer vector as column vector.

Matrix

A matrix with *m* rows and *n* columns is called an $m \times n$ matrix and denoted by

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

■ The identity matrix of size *n* is a diagonal matrix

$$\mathbf{Id}_n = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}_{n \times n}$$

•

\<u>~</u>___

Definition - Vector inner product

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, their inner product or dot product returns a scalar

$$\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i.$$

Alternative notation

 $\mathbf{x}^{\mathsf{T}}\mathbf{y}$.

Given any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, their distance is

$$\|\mathbf{x} - \mathbf{y}\| = \sqrt{\langle \mathbf{x} - \mathbf{y} \mid \mathbf{x} - \mathbf{y} \rangle}.$$

Vector spaces Norms

Definition - Vector *p***-norm**

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector and $p \ge 1$, then the *p*-norm (also called ℓ_p -norm) of \mathbf{x} is defined by

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |\mathbf{x}_{i}|^{p}\right)^{1/p}$$

Definition - Vector *p***-norm**

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector and $p \ge 1$, then the *p*-norm (also called ℓ_p -norm) of \mathbf{x} is defined by

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |\mathbf{x}_{i}|^{p}\right)^{1/p}$$

A norm must satisfies

- **•** Positivity: $\|\mathbf{x}\|_p \ge 0$, $\|\mathbf{x}\|_p = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- Homogeneity: $||r\mathbf{x}||_p = |r|||\mathbf{x}||_p, r \in \mathbb{R}$.
- **•** Triangle inequality: $\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$.

Example - ℓ_2 **-norm (Euclidean norm)**

Let p = 2 we obtain the Euclidean norm of **x**

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |\mathbf{x}_i|^2} = \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}}.$$

u $\|\mathbf{x}\|$ without subscript 2 is also used to denote ℓ_2 -norm.

Example - ℓ_2 **-norm (Euclidean norm)**

Let p = 2 we obtain the Euclidean norm of **x**

$$\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |\mathbf{x}_i|^2} = \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}}.$$

u $\|\mathbf{x}\|$ without subscript 2 is also used to denote ℓ_2 -norm.

Example - ℓ_1 -norm

Let p = 1 we obtain the ℓ_1 -norm of **x**

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |\mathbf{x}_i|.$$

Example - ℓ_2 -norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of \boldsymbol{x}

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |\mathbf{x}_i|^2} = \sqrt{\mathbf{x}^{\mathsf{T}} \mathbf{x}}.$$

u $\|\mathbf{x}\|$ without subscript 2 is also used to denote ℓ_2 -norm.

Example - ℓ_1 -norm

Let p = 1 we obtain the ℓ_1 -norm of **x**

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |\mathbf{x}_i|.$$

Example - ℓ_{∞} -norm

The infinity norm of **x** is defined by

$$\|\boldsymbol{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|.$$

Vector spaces Norms

Definition - Vector inner product

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, their inner product or dot product returns a scalar

$$\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i.$$

Theorem - Cauchy-Schwarz inequality

For any two vectors **x** and **y** in \mathbb{R}^n , the Cauchy-Schwarz inequality

 $|\langle \mathbf{x} \mid \mathbf{y}
angle| \le \|\mathbf{x}\| \|\mathbf{y}\|$

holds. Furthermore, equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as

$$\|\mathbf{v}\|_* = \sup \left\{ \langle \mathbf{v} \, | \, \mathbf{x} \rangle \ : \ \|\mathbf{x}\| \le 1 \right\}.$$

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as

$$\|\mathbf{v}\|_* = \sup \left\{ \langle \mathbf{v} \, | \, \mathbf{x} \rangle : \|\mathbf{x}\| \le 1
ight\}.$$

The dual of the **Euclidean norm** is the **Euclidean norm**

$$\sup\left\{ \langle \mathbf{v} \, | \, \mathbf{x} \rangle \; : \; \|\mathbf{x}\|_2 \leq 1 \right\} = \|\mathbf{v}\|_2.$$

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as $\|\mathbf{v}\|_* = \sup \{ \langle \mathbf{v} \mid \mathbf{x} \rangle : \|\mathbf{x}\| \le 1 \}.$

The dual of the ℓ_1 -norm is the ℓ_∞ -norm

$$\sup\left\{\left< \mathbf{v} \mid \mathbf{x} \right> : \|\mathbf{x}\|_{1} \leq 1\right\} = \|\mathbf{v}\|_{\infty}.$$

Recall that in \mathbb{R}^2

$$\langle \mathbf{v} | \mathbf{x} \rangle = \mathbf{v}_1 \mathbf{x}_1 + \mathbf{v}_2 \mathbf{x}_2.$$

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as $\|\mathbf{v}\|_* = \sup \{ \langle \mathbf{v} \mid \mathbf{x} \rangle : \|\mathbf{x}\| \le 1 \}.$

The dual of the ℓ_{∞} -norm is the ℓ_1 -norm

$$\sup\left\{\left\langle \mathbf{v} \mid \mathbf{x}\right\rangle : \left\|\mathbf{x}\right\|_{\infty} \leq 1\right\} = \left\|\mathbf{v}\right\|_{1}.$$

Recall that in \mathbb{R}^2

$$\langle \mathbf{v} | \mathbf{x} \rangle = \mathbf{v}_1 \mathbf{x}_1 + \mathbf{v}_2 \mathbf{x}_2.$$

Proposition - Dual norm

Given $p, q \geq 1$, ℓ_p -norm and ℓ_q -norm are dual of each other if

$$\frac{1}{p} + \frac{1}{q} = 1$$

Proposition - Dual norm

Given $p, q \ge 1$, ℓ_p -norm and ℓ_q -norm are dual of each other if

$$\frac{1}{p} + \frac{1}{q} = 1$$

Theorem - generalized Cauchy-Schwarz inequality

Given any nonzero $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^n$, there holds

$$\langle \mathbf{v} \, | \, \mathbf{x} / \| \mathbf{x} \| \rangle \leq \sup \left\{ \langle \mathbf{v} \, | \, \mathbf{y} \rangle \ : \ \| \mathbf{y} \| \leq 1 \right\} = \| \mathbf{v} \|_{*} \quad \Longrightarrow \quad \langle \mathbf{v} \, | \, \mathbf{x} \rangle \leq \| \mathbf{v} \|_{*} \| \mathbf{x} |$$

which holds for all **v** and **x**.

■ The inequality is **tight** in the sense that, for any **x** there exists a **v** such that the equality holds, and vice versa.

Definition - Convex set

A subset S of \mathbb{R}^n is convex if for any $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0, 1]$, there holds

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in \mathbf{S}.$

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}$ is called the **convex combination** of \mathbf{x} and \mathbf{y} .

Definition - Convex set

A subset S of \mathbb{R}^n is convex if for any $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0, 1]$, there holds

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in \mathbf{S}.$

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y}$ is called the **convex combination** of \mathbf{x} and \mathbf{y} .

Example - Hyper plane and half space

Given $\boldsymbol{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$,

Hyper plane

$$H \stackrel{\text{\tiny def}}{=} \big\{ \mathbf{X} : \mathbf{a}^{\mathsf{T}} \mathbf{X} = b \big\}.$$

Half space

$$H \stackrel{\text{\tiny def}}{=} \{ \mathbf{x} : \mathbf{a}^{\mathsf{T}} \mathbf{x} \leq b \}.$$

Proposition - Some properties

• Let S be a convex set, then $\beta S = \{\beta \mathbf{x} : \mathbf{x} \in S\}$ is convex.

Let S_i , i = 1, 2, ..., m be a family of convex sets, then

$$\bigcap_{i=1,2,\ldots,m} S$$

is convex.

Let S_1, S_2 be two convex sets, then

 $S_1 + S_2$ and $S_1 - S_2$

are convex.

Definition - Interior point

An element $\mathbf{x} \in S \subset \mathbb{R}^n$ is called an *interior point* of S if there $\exists \epsilon > 0$ for which

$$\left\{ \mathbf{y} \ : \ \|\mathbf{y} - \mathbf{x}\| \leq \epsilon
ight\} \subset \mathsf{S}.$$

The interior of *S*, *i.e.* int(*S*), denotes the set of all interior points of *S*.

Definition - Interior point

An element $\mathbf{x} \in S \subset \mathbb{R}^n$ is called an *interior point* of *S* if there $\exists \epsilon > 0$ for which $\{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| \le \epsilon\} \subset S.$

■ The interior of *S*, *i.e.* int(*S*), denotes the set of all interior points of *S*.

A set S is open if int(S) = S, it is closed if

$$\mathbb{R}^n \setminus S = \left\{ \boldsymbol{x} \in \mathbb{R}^n \ : \ \boldsymbol{x} \notin S \right\}$$

is open.

Definition - Interior point

An element $\mathbf{x} \in S \subset \mathbb{R}^n$ is called an *interior point* of *S* if there $\exists \epsilon > 0$ for which $\{\mathbf{y} : \|\mathbf{y} - \mathbf{x}\| \le \epsilon\} \subset S.$

■ The interior of *S*, *i.e.* int(*S*), denotes the set of all interior points of *S*.

A set S is open if int(S) = S, it is closed if

$$\mathbb{R}^n \setminus S = \left\{ \boldsymbol{x} \in \mathbb{R}^n \ : \ \boldsymbol{x} \notin S \right\}$$

is open.

The closure and boundary of S are defined as

 $\operatorname{cl}(S) = \mathbb{R}^n \setminus \operatorname{int}(\mathbb{R}^n \setminus S)$ and $\operatorname{bd}(S) = \operatorname{cl}(S) \setminus \operatorname{int}(S)$.

Non-expansive operators

Definition - Non-expansive operator

Let *S* be a non-empty subset of \mathbb{R}^n and let $\mathcal{F} : S \to \mathbb{R}^n$. Then \mathcal{F} is *non-expansive* if it is Lipschitz continuous with constant 1, *i.e.*

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S}) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|.$$

Definition - Non-expansive operator

Let S be a non-empty subset of \mathbb{R}^n and let $\mathcal{F} : S \to \mathbb{R}^n$. Then \mathcal{F} is *non-expansive* if it is Lipschitz continuous with constant 1, *i.e.*

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S}) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|.$$

Definition - Firmly non-expansive operator

 ${\mathcal F}$ is firmly non-expansive if

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S}) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\|^2 + \|(\mathbf{Id} - \mathcal{F})(\mathbf{x}) - (\mathbf{Id} - \mathcal{F})(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2.$$

The following are equivalent

- \mathcal{F} is firmly non-expansive.
- **Id** $-\mathcal{F}$ is firmly non-expansive.
- $2\mathcal{F} \mathbf{Id}$ is non-expansive.

Definition - Non-expansive operator

Let *S* be a non-empty subset of \mathbb{R}^n and let $\mathcal{F} : S \to \mathbb{R}^n$. Then \mathcal{F} is *non-expansive* if it is Lipschitz continuous with constant 1, *i.e.*

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{S}) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\| \le \|\mathbf{x} - \mathbf{y}\|.$$

Definition - Averaged non-expansiveness

Let *S* be a non-empty subset of \mathbb{R}^n and let $\mathcal{F} : S \to \mathbb{R}^n$. Then \mathcal{F} is α -averaged non-expansive if there exist $\alpha \in]0, 1[$ and a non-expansive operator \mathcal{R} such that

 $\mathcal{F} = (1 - \alpha)\mathbf{Id} + \alpha \mathcal{R}.$

Definition - Non-expansive operator

Let S be a non-empty convex subset of \mathbb{R}^n and $\mathcal{F} : S \to \mathbb{R}^n$ be a non-expansive operator, the set of fixed points of \mathcal{F} , denoted by $fix(\mathcal{F})$, is defined by

 $\operatorname{fix}(\mathcal{F}) \stackrel{\text{\tiny def}}{=} \big\{ \boldsymbol{x} \in S : \boldsymbol{x} = \mathcal{F}(\boldsymbol{x}) \big\}.$

Definition - Non-expansive operator

Let S be a non-empty convex subset of \mathbb{R}^n and $\mathcal{F} : S \to \mathbb{R}^n$ be a non-expansive operator, the set of fixed points of \mathcal{F} , denoted by $fix(\mathcal{F})$, is defined by

$$\operatorname{fix}(\mathcal{F}) \stackrel{\text{\tiny def}}{=} \big\{ \boldsymbol{x} \in S \ : \ \boldsymbol{x} = \mathcal{F}(\boldsymbol{x}) \big\}.$$

Proposition - Convexity

Let *S* be a non-empty closed convex subset of \mathbb{R}^n and let $\mathcal{F} : S \to \mathbb{R}^n$ be non-expansive, then the set of fixed points $fix(\mathcal{F})$ is *closed and convex*.

Definition - Non-expansive operator

Let S be a non-empty convex subset of \mathbb{R}^n and $\mathcal{F} : S \to \mathbb{R}^n$ be a non-expansive operator, the set of fixed points of \mathcal{F} , denoted by $fix(\mathcal{F})$, is defined by

$$\operatorname{fix}(\mathcal{F}) \stackrel{\text{\tiny def}}{=} \big\{ \boldsymbol{x} \in S : \boldsymbol{x} = \mathcal{F}(\boldsymbol{x}) \big\}.$$

Proposition - Convexity

Let *S* be a non-empty closed convex subset of \mathbb{R}^n and let $\mathcal{F} : S \to \mathbb{R}^n$ be non-expansive, then the set of fixed points $fix(\mathcal{F})$ is *closed and convex*.

Theorem - Browder-Göhde-Kirk

Let S be a non-empty bounded closed convex subset of \mathbb{R}^n and $\mathcal{F} : S \to S$ be a non-expansive operator. Then

$$\operatorname{fix}(\mathcal{F}) \neq \emptyset.$$

Fejér monotonicity

Fejér monotonicity, fixed-point iteration

Sequence and limits

A number $x^* \in \mathbb{R}$ is called the limit of the sequence $\{x^{(k)}\}_{k \in \mathbb{N}}$ if for any positive $\epsilon > 0$ there exists a number $\overline{k} > 0$ such that for all $k \ge \overline{k}$, there holds

$$|\mathbf{x}^{(k)}-\mathbf{x}^{\star}|<\epsilon.$$

That is, $\mathbf{x}^{(k)} \in [\mathbf{x}^{\star} - \epsilon, \mathbf{x}^{\star} + \epsilon]$ for all $k \ge \overline{k}$. In this case, we write

$$x^{\star} = \lim_{k \to +\infty} x^{(k)}$$

or

$$\mathbf{x}^{(\kappa)} \to \mathbf{x}^{\star}.$$

(1)

A sequence that has a limit is called a convergent sequence.

Extension to sequences in \mathbb{R}^n .

Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in \mathbb{R} is convergent.
Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in \mathbb{R} is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in \mathbb{R} is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Bolzano-Weierstrass Any bounded sequence has a convergent subsequence.

Fejér monotonicity

Definition - Fejér monotonicity

Let *S* be a non-empty subset of \mathbb{R}^n and let $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n . Then $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ is *Fejér monotone* with respect to *S* if

$$(\forall \mathbf{x} \in S)(\mathbf{k} \in \mathbb{N}) \quad \|\mathbf{x}^{(k+1)} - \mathbf{x}\| \le \|\mathbf{x}^{(k)} - \mathbf{x}\|.$$

Fejér monotonicity

Definition - Fejér monotonicity

Let *S* be a non-empty subset of \mathbb{R}^n and let $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n . Then $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ is *Fejér monotone* with respect to *S* if

$$(\forall \mathbf{x} \in S)(\mathbf{k} \in \mathbb{N}) \quad \|\mathbf{x}^{(k+1)} - \mathbf{x}\| \le \|\mathbf{x}^{(k)} - \mathbf{x}\|.$$

Theorem - Fejér monotonicity and convergence

Let *S* be a nonempty subset of \mathbb{R}^n and let $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n . Suppose that $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to *S*, then

• $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ is bounded. For every $\mathbf{x} \in S$, $\{\|\mathbf{x}^{(k)} - \mathbf{x}\|\}_{k\in\mathbb{N}}$ converges.

If every sequential cluster point of $\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}$ belongs to *S*, then

• $\{\mathbf{x}^{(k)}\}_{k \in \mathbb{N}}$ converges to a point in *S*.

Definition - Fixed-point iteration

Let *S* be a nonempty closed convex subset of \mathbb{R}^n , let operator $\mathcal{F} : S \to S$ be non-expansive such that $fix(\mathcal{F}) \neq \emptyset$. Let $\mathbf{x}^{(0)} \in S$, and set

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{(k+1)} = \mathcal{F}(\mathbf{x}^{(k)}).$$

Suppose that $\mathbf{x}^{(k)} - \mathcal{F}(\mathbf{x}^{(k)}) \rightarrow \mathbf{0}$, then

• $\{\mathbf{x}^{(k)}\}_{k \in \mathbb{N}}$ converges to a point in $fix(\mathcal{F})$.

Only non-expansiveness does not guarantee convergence.

Theorem - Groetsch

Let *S* be a nonempty closed convex subset of \mathbb{R}^n , let operator $\mathcal{F} : S \to S$ be non-expansive such that $\operatorname{fix}(\mathcal{F}) \neq \emptyset$. Let $\{\lambda_k\}_{k \in \mathbb{N}}$ be a sequence in [0, 1] such that $\sum_k \lambda_k (1 - \lambda_k) = +\infty$, and let $\boldsymbol{x}^{(0)} \in S$. Set

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \lambda_k \big(\mathcal{F}(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)} \big).$$

Then the following hold

■ When \mathcal{F} is α -averaged non-expansive, then for $\{\lambda_k\}_{k\in\mathbb{N}}$, the condition changes to $\lambda_k \in [0, 1/\alpha]$ and

$$\sum_{k} \lambda_k \left(\frac{1}{\alpha} - \lambda_k \right) = +\infty.$$

Fejér monotonicity

Functions

Let $S \subset \mathbb{R}^n$, a function F is a mapping from S to $[-\infty, +\infty]$, *i.e.* $F : S \rightarrow [-\infty, +\infty]$.

The domain of F is

$$\operatorname{dom}(F) \stackrel{\text{\tiny def}}{=} \Big\{ \boldsymbol{x} \in S \ : \ F(\boldsymbol{x}) < +\infty \Big\}.$$

The graph of F is

$$\operatorname{gra}(F) \stackrel{\text{\tiny def}}{=} \Big\{ (\boldsymbol{x}, \boldsymbol{v}) \in S \times \mathbb{R} \ : \ F(\boldsymbol{x}) = \boldsymbol{v} \Big\}.$$

The epi graph of F is

$$\mathrm{epi}(F) \stackrel{\text{\tiny def}}{=} \Big\{ (\pmb{x}, \pmb{v}) \in \pmb{S} \times \mathbb{R} \; : \; F(\pmb{x}) \leq \pmb{v} \Big\}.$$

■ The sub-level set of F is

$$\mathrm{lev}_{\leq v}(F) \stackrel{\scriptscriptstyle\mathrm{def}}{=} \Big\{ \pmb{x} \in S \ : \ F(\pmb{x}) \leq v \Big\}.$$

Convex functions

Functions

Closed function

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and $+\infty$.

Closed function

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and $+\infty$.

Example - Indicator function

Let $S \subset \mathbb{R}^n$ be a set, the *indicator function* of S is an extended real-valued function given by

$$\iota_{\mathsf{S}}(\mathbf{x}) = \begin{cases} 0 : \ \mathbf{x} \in \mathsf{S}, \\ +\infty : \ \mathbf{x} \notin \mathsf{S}. \end{cases}$$

Closed function

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and $+\infty$.

Example - Indicator function

Let $S \subset \mathbb{R}^n$ be a set, the *indicator function* of S is an extended real-valued function given by

$$\iota_{\mathsf{S}}(\mathbf{x}) = \begin{cases} 0 : \ \mathbf{x} \in \mathsf{S}, \\ +\infty : \ \mathbf{x} \notin \mathsf{S}. \end{cases}$$

Definition - Closed function

A function $F : \mathbb{R}^n \to [-\infty, +\infty]$ is closed if

epi-graph is closed.

sub-level set is closed.

Definition - Convex function

Let $S \subset \mathbb{R}^n$ be a non-empty convex set, a function $F : S \to \mathbb{R}$ is said to be **convex** if for any $x, y \in S$ and any $\lambda \in (0, 1)$, there holds

$$\mathsf{F}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda \mathsf{F}(\mathbf{x}) + (1 - \lambda)\mathsf{F}(\mathbf{y}).$$

■ If *−F* is convex, then *F* is said to be **concave**.

Definition - Convex function

Let $S \subset \mathbb{R}^n$ be a non-empty convex set, a function $F : S \to \mathbb{R}$ is said to be **convex** if for any $x, y \in S$ and any $\lambda \in (0, 1)$, there holds

$$\mathsf{F}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda \mathsf{F}(\mathbf{x}) + (1 - \lambda)\mathsf{F}(\mathbf{y}).$$

■ If *−F* is convex, then *F* is said to be **concave**.

Example - Examples on \mathbb{R}

- Absolute value function F(x) = |x| is closed and convex.
- The function $F(x) = -\log(x)$ is closed and convex.

Definition - Convex function

Let $S \subset \mathbb{R}^n$ be a non-empty convex set, a function $F : S \to \mathbb{R}$ is said to be **convex** if for any $x, y \in S$ and any $\lambda \in (0, 1)$, there holds

$$\mathsf{F}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda \mathsf{F}(\mathbf{x}) + (1 - \lambda)\mathsf{F}(\mathbf{y}).$$

■ If *−F* is convex, then *F* is said to be **concave**.

Definition - Strong convexity

Function $F : \mathbb{R}^n \to \mathbb{R}$ is strongly convex if $\operatorname{dom}(F)$ is convex, there exists $\alpha > 0$ such that

$$F(\mathbf{x}) - \frac{\alpha}{2} \|\mathbf{x}\|^2$$

is convex.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^{k} F_{i}$...

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^{k} F_{i}$...

Let $F : S \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0, 1[$ such that $\sum_i \alpha_i = 1$, then $F(\sum_i \alpha_i \mathbf{x}_i) \le \sum_i \alpha_i F(\mathbf{x}_i)$.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^{k} F_{i}$...

Let $F : S \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0, 1[$ such that $\sum_i \alpha_i = 1$, then $F(\sum_i \alpha_i \mathbf{x}_i) \le \sum_i \alpha_i F(\mathbf{x}_i)$.

Let $S \subset \mathbb{R}$ be a non-empty convex set and $F : S \to \mathbb{R}$ a convex function, then F is continuous along the interior of S.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^{k} F_{i}$...

Let $F : S \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0, 1[$ such that $\sum_i \alpha_i = 1$, then $F(\sum_i \alpha_i \mathbf{x}_i) \le \sum_i \alpha_i F(\mathbf{x}_i)$.

Let $S \subset \mathbb{R}$ be a non-empty convex set and $F : S \to \mathbb{R}$ a convex function, then F is continuous along the interior of S.

Let $F : S \to \mathbb{R}$ be a convex function and any $\alpha \in \mathbb{R}$, then the sub-level set is convex.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^{k} F_{i}$...

Let $F : S \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0, 1[$ such that $\sum_i \alpha_i = 1$, then $F(\sum_i \alpha_i \mathbf{x}_i) \le \sum_i \alpha_i F(\mathbf{x}_i)$.

Let $S \subset \mathbb{R}$ be a non-empty convex set and $F : S \to \mathbb{R}$ a convex function, then F is continuous along the interior of S.

Let $F : S \to \mathbb{R}$ be a convex function and any $\alpha \in \mathbb{R}$, then the sub-level set is convex.

Definition - $\Gamma_0(\mathbb{R}^n)$

The set of all *proper*, closed and convex functions on \mathbb{R}^n is denoted as $\Gamma_0(\mathbb{R}^n)$.

Convex functions

Differentiability

Definition - Directional derivative

Let *S* be a nonempty subset of \mathbb{R}^n , $F : \mathbb{R}^n \to \mathbb{R}$, and $\mathbf{x} \in \text{dom}(F)$. The directional derivative of *F* at \mathbf{x} in the direction \mathbf{y} is

$$\nabla_{\mathbf{y}} \mathsf{F}(\mathbf{x}) = \lim_{\alpha \downarrow 0} \frac{\mathsf{F}(\mathbf{x} + \alpha \mathbf{y}) - \mathsf{F}(\mathbf{x})}{\alpha}$$

provided that the limits exists.

Definition - Directional derivative

Let *S* be a nonempty subset of \mathbb{R}^n , $F : \mathbb{R}^n \to \mathbb{R}$, and $\mathbf{x} \in \text{dom}(F)$. The directional derivative of *F* at \mathbf{x} in the direction \mathbf{y} is

$$\nabla_{\mathbf{y}} F(\mathbf{x}) = \lim_{\alpha \downarrow 0} \frac{F(\mathbf{x} + \alpha \mathbf{y}) - F(\mathbf{x})}{\alpha}$$

provided that the limits exists.

Definition - Gradient

Let *S* be a subset of \mathbb{R}^n , $F : S \to \mathbb{R}$, and suppose that *F* is differentiable at $\mathbf{x} \in S$. Then, there exists a unique vector $\nabla F(\mathbf{x}) \in \mathbb{R}^n$ such that such

$$(\forall \mathbf{y} \in \mathbb{R}^n \text{ with } \|\mathbf{y}\| = 1) \quad \nabla_{\mathbf{y}} F(\mathbf{x}) = \langle \mathbf{y} \mid \nabla F(\mathbf{x}) \rangle.$$

Differentiability

The (Gâteaux) gradient of F at $\mathbf{x} \in S \subset \text{dom}(F)$ is an *n*-dimensional vector

$$\nabla F(\mathbf{x}) = \begin{bmatrix} \frac{\partial F(\mathbf{x})}{\partial x_1} \\ \frac{\partial F(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial F(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n,$$

where the partial derivative is defined by

$$\frac{\partial F(\boldsymbol{x})}{\partial \boldsymbol{x}_{i}} = \lim_{\alpha \downarrow 0} \frac{F(\boldsymbol{x} + \alpha \boldsymbol{e}_{i}) - F(\boldsymbol{x})}{\alpha}.$$

The (Gâteaux) gradient of F at $\mathbf{x} \in S \subset \text{dom}(F)$ is an *n*-dimensional vector

$$\nabla F(\mathbf{x}) = \begin{bmatrix} \frac{\partial F(\mathbf{x})}{\partial x_1} \\ \frac{\partial F(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial F(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n,$$

where the partial derivative is defined by

$$\frac{\partial F(\mathbf{x})}{\partial \mathbf{x}_{i}} = \lim_{\alpha \downarrow 0} \frac{F(\mathbf{x} + \alpha \mathbf{e}_{i}) - F(\mathbf{x})}{\alpha}$$

Proposition - Characterization of convexity

Let $S \subset \mathbb{R}^n$ be an open set and $F : S \to \mathbb{R}$ be convex and smooth differentiable, then

$$\blacksquare F(\mathbf{y}) \geq F(\mathbf{x}) + \langle \nabla F(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle.$$

Differentiability

Subdifferentiability

Definition - Subdifferential

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper convex. The *subdifferential* of R at is the set-valued operator

$$\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n: \mathbf{X} \to \Big\{ \mathbf{v} \in \mathbb{R}^n : (\forall \mathbf{y} \in \mathbb{R}^n) \ \langle \mathbf{y} - \mathbf{X} \mid \mathbf{v} \rangle + R(\mathbf{X}) \le R(\mathbf{y}) \Big\}.$$

Let $\mathbf{x} \in \mathbb{R}^n$, then R is subdifferentiable at \mathbf{x} if $\partial R(\mathbf{x}) \neq \emptyset$.

• The elements of $\partial R(\mathbf{x})$ are the subgradients of R at \mathbf{x} .

Subdifferentiability

Definition - Subdifferential

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper convex. The *subdifferential* of R at is the set-valued operator

$$\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n: \boldsymbol{x} \to \Big\{ \boldsymbol{v} \in \mathbb{R}^n \, : \, (\forall \boldsymbol{y} \in \mathbb{R}^n) \ \langle \boldsymbol{y} - \boldsymbol{x} \mid \boldsymbol{v} \rangle + R(\boldsymbol{x}) \leq R(\boldsymbol{y}) \Big\}.$$

Let $\mathbf{x} \in \mathbb{R}^n$, then R is subdifferentiable at \mathbf{x} if $\partial R(\mathbf{x}) \neq \emptyset$.

• The elements of $\partial R(\mathbf{x})$ are the subgradients of R at \mathbf{x} .

Example - Indicator function

Let *S* be a non-empty convex subset of \mathbb{R}^n . Then

$$\partial \iota_{\mathsf{S}}(\mathbf{x}) = \mathcal{N}_{\mathsf{S}}(\mathbf{x}) = \begin{cases} \{\mathbf{v} \in \mathbb{R}^n : \sup \langle \mathbf{v} \mid \mathsf{S} - \mathbf{x} \rangle \leq 0\} : \ \mathbf{x} \in \mathsf{S}, \\ \emptyset : \text{ o.w.} \end{cases}$$

Differentiability

Subdifferentiability

Definition - Subdifferential

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper convex. The *subdifferential* of R at is the set-valued operator

$$\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n: \boldsymbol{x} \to \Big\{ \boldsymbol{v} \in \mathbb{R}^n : (\forall \boldsymbol{y} \in \mathbb{R}^n) \ \langle \boldsymbol{y} - \boldsymbol{x} \mid \boldsymbol{v} \rangle + R(\boldsymbol{x}) \leq R(\boldsymbol{y}) \Big\}.$$

Let $\mathbf{x} \in \mathbb{R}^n$, then R is subdifferentiable at \mathbf{x} if $\partial R(\mathbf{x}) \neq \emptyset$.

• The elements of $\partial R(\mathbf{x})$ are the subgradients of R at \mathbf{x} .

Proposition - Convexity of subdifferential

Let $R : \mathbb{R}^n \to]-\infty, +\infty]$ be proper convex and $\mathbf{x} \in \operatorname{dom}(R)$. Then

 $\bullet \operatorname{dom}(\partial R) \subset \operatorname{dom}(R).$

 $\blacksquare \partial R(\mathbf{x})$ is closed and convex.

Convex minimization problem

Minimizers, and characterizations

Global and local minimum

Definition - Infimum and minimum

Let $\Phi: \mathbf{S} \to [-\infty, +\infty]$ and let \mathbf{C} be a subset of S.

• The infimum of Φ over C is $\inf \Phi(C)$; it is also denoted by

 $\inf_{\mathbf{x}\in\mathbf{C}} \Phi(\mathbf{x}).$

• Φ achieves its infimum over C if there exists $\mathbf{y} \in \mathbf{C}$ such that

 $\Phi(\mathbf{y}) = \inf \, \Phi(\mathbf{C}).$

In this case, we write

$$\Phi(\mathbf{y}) = \min \Phi(\mathbf{C}) \quad \text{or} \quad \Phi(\mathbf{y}) = \min_{\mathbf{x} \in \mathbf{C}} \Phi(\mathbf{x})$$

and call $\min \Phi(C)$ the minimum of Φ over C.

_____^_

Definition - Global and local minimum

Let $\Phi:\mathbb{R}^n\to]{-}\infty,+\infty]$ be proper, and let $\mathbf{x}\in\mathbb{R}^n$

x is a (global) minimizer of Φ if

$$\Phi(\mathbf{X}) = \inf \, \Phi(\mathbb{R}^n)$$

and $\Phi(\mathbf{x}) = \min \Phi(\mathbb{R}^n) \in \mathbb{R}$.

• The set of minimizers of Φ is denoted by $\operatorname{Argmin}(\Phi)$.

If $\operatorname{Argmin}(\Phi)$ is a singleton, its unique element is denoted by $\operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} \Phi(\mathbf{x})$.

Let S be a subset of \mathbb{R}^n such that $\mathsf{S}\cap\operatorname{dom}(\Phi)\neq\emptyset$

- A minimizer of Φ over S is a minimizer of $\Phi + \iota_{S}$.
- If $\exists \rho > 0$ such that **x** is a minimizer of Φ over $\mathcal{B}(\mathbf{x}; \rho)$, then **x** is a local minimizer of Φ .

Definition - Global and local minimum

Let $\Phi:\mathbb{R}^{n}\rightarrow]{-}\infty,+\infty]$ be proper, and let $\mathbf{x}\in\mathbb{R}^{n}$

x is a (global) minimizer of Φ if

$$\Phi(\mathbf{X}) = \inf \, \Phi(\mathbb{R}^n)$$

and $\Phi(\mathbf{x}) = \min \ \Phi(\mathbb{R}^n) \in \mathbb{R}$.

• The set of minimizers of Φ is denoted by $\operatorname{Argmin}(\Phi)$.

If $\operatorname{Argmin}(\Phi)$ is a singleton, its unique element is denoted by $\operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^n} \Phi(\mathbf{x})$.

Let S be a subset of \mathbb{R}^n such that $\mathsf{S}\cap\operatorname{dom}(\Phi)\neq\emptyset$

• A minimizer of Φ over S is a minimizer of $\Phi + \iota_{S}$.

If $\exists \rho > 0$ such that **x** is a minimizer of Φ over $\mathcal{B}(\mathbf{x}; \rho)$, then **x** is a local minimizer of Φ .

Theorem - Convexity and local minimizer

Let $\Phi:\mathbb{R}^n\to]-\infty,+\infty]$ be proper convex. Then every local minimizer of Φ is a minimizer.

Convex minimization problem

Fermat's rule

Theorem - Fermat's rule

Let $\Phi:\mathbb{R}^n
ightarrow]-\infty,+\infty]$ be proper. Then

$$\operatorname{Argmin}(\Phi) = \operatorname{zer}(\partial \Phi) \stackrel{\text{\tiny def}}{=} \Big\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{0} \in \partial \Phi(\boldsymbol{x}) \Big\}.$$

Characterization of minimizers

Problem - A non-smooth problem

Let $F \in \Gamma_0(\mathbb{R}^n)$, $K : \mathbb{R}^n \to \mathbb{R}^m$ be non-zero bounded linear and $R \in \Gamma_0(\mathbb{R}^m)$

$$\min_{\mathbf{x}} \Big\{ \Phi(\mathbf{x}) \stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \Big\},\$$

Characterization of minimizers

Problem - A non-smooth problem

Let $F \in \Gamma_0(\mathbb{R}^n)$, $\mathbf{K} : \mathbb{R}^n \to \mathbb{R}^m$ be non-zero bounded linear and $\mathbf{R} \in \Gamma_0(\mathbb{R}^m)$

$$\min_{\mathbf{x}} \Big\{ \Phi(\mathbf{x}) \stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \Big\},\$$

In general,

$$\partial \Phi = \partial (\mathbf{F} + \mathbf{R} \circ \mathbf{K}) \neq \partial \mathbf{F} + \mathbf{K}^* \circ \partial \mathbf{R} \circ \mathbf{K}.$$

~~
Characterization of minimizers

Problem - A non-smooth problem

Let $F \in \Gamma_0(\mathbb{R}^n)$, $\mathbf{K} : \mathbb{R}^n \to \mathbb{R}^m$ be non-zero bounded linear and $\mathbf{R} \in \Gamma_0(\mathbb{R}^m)$

$$\min_{\mathbf{x}} \Big\{ \Phi(\mathbf{x}) \stackrel{\text{\tiny def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \Big\},\$$

In general,

$$\partial \Phi = \partial (\mathbf{F} + \mathbf{R} \circ \mathbf{K}) \neq \partial \mathbf{F} + \mathbf{K}^* \circ \partial \mathbf{R} \circ \mathbf{K}.$$

Suppose
$$\operatorname{dom}(R) \cap \operatorname{K}\operatorname{dom}(F) \neq \emptyset$$
,

$$\partial F + \mathbf{K}^* \circ \partial R \circ \mathbf{K} \subset \partial (F + R \circ \mathbf{K}).$$

~~

Characterization of minimizers

Proposition - Characterization of minimizers

Let $F \in \Gamma_0(\mathbb{R}^n)$, $\mathbf{K} : \mathbb{R}^n \to \mathbb{R}^m$ be non-zero bounded and $R \in \Gamma_0(\mathbb{R}^m)$. Then the following holds $\operatorname{zer}(\partial F + \mathbf{K}^* \circ \partial R \circ \mathbf{K}) \subset \operatorname{Argmin}(F + R \circ \mathbf{K})$. Suppose $\operatorname{Argmin}(F + R \circ \mathbf{K}) \neq \emptyset$ and $\operatorname{ri}(\operatorname{dom}(R)) \cap \operatorname{ri}(\mathbf{K}\operatorname{dom}(F)) \neq \emptyset$. Then

Then

$$\operatorname{Argmin}(F + R \circ K) = \operatorname{zer}(\partial F + K^* \circ \partial R \circ K) \neq \emptyset.$$

Let $\mathbf{x}^* \in \operatorname{Argmin}(F + R \circ \mathbf{K})$, the corresponding optimality condition reads $\mathbf{0} \in \partial F(\mathbf{x}^*) + \mathbf{K}^* \partial R(\mathbf{K}\mathbf{x}^*).$

_____^__

Definition - Set-valued operator

An operator $\mathcal{A} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is set-valued if for every $\mathbf{x} \in \mathbb{R}^n$, $\mathcal{A}(\mathbf{x})$ is a subset of \mathbb{R}^n . Its graph is defined by

$$ext{gra}(\mathcal{A}) = \Big\{ (\pmb{x}, \pmb{u}) \in \mathbb{R}^n imes \mathbb{R}^n \ : \ \pmb{u} \in \mathcal{A}(\pmb{x}) \Big\}.$$

Definition - Set-valued operator

An operator $\mathcal{A} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is set-valued if for every $\mathbf{x} \in \mathbb{R}^n$, $\mathcal{A}(\mathbf{x})$ is a subset of \mathbb{R}^n . Its graph is defined by

$$\operatorname{gra}(\mathcal{A}) = \Big\{ (\mathbf{x}, \mathbf{u}) \in \mathbb{R}^n \times \mathbb{R}^n : \mathbf{u} \in \mathcal{A}(\mathbf{x}) \Big\}.$$

Definition - Monotone operator

Let $\mathcal{A} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$. Then A is monotone if

$$(\forall (\mathbf{x}, \mathbf{u}) \in \operatorname{gra}(\mathcal{A}))((\mathbf{y}, \mathbf{v}) \in \operatorname{gra}(\mathcal{A})) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathbf{u} - \mathbf{v} \rangle \ge 0.$$

It is moreover maximally monotone if gra(A) cannot be contained properly by the graph of another monotone operator \mathcal{B} .

Definition - Monotone operator

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$. Then A is monotone if

$$(\forall (\mathbf{x}, \mathbf{u}) \in \operatorname{gra}(\mathcal{A})) ((\mathbf{y}, \mathbf{v}) \in \operatorname{gra}(\mathcal{A})) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathbf{u} - \mathbf{v} \rangle \ge 0.$$

It is moreover maximally monotone if gra(A) cannot be contained properly by the graph of another monotone operator \mathcal{B} .

Theorem - Moreau

Let $R \in \Gamma_0(\mathbb{R}^n)$. Then ∂R is maximally monotone.

Definition - Monotone operator

Let $\mathcal{A}: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$. Then A is monotone if

$$(\forall (\mathbf{x}, \mathbf{u}) \in \operatorname{gra}(\mathcal{A})) ((\mathbf{y}, \mathbf{v}) \in \operatorname{gra}(\mathcal{A})) \quad \langle \mathbf{x} - \mathbf{y} \mid \mathbf{u} - \mathbf{v} \rangle \ge 0.$$

It is moreover *maximally monotone* if gra(A) cannot be contained properly by the graph of another monotone operator \mathcal{B} .

Theorem - Moreau

Let $R \in \Gamma_0(\mathbb{R}^n)$. Then ∂R is maximally monotone.

Proposition -

Let $\mathcal{A} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximally monotone and $\mathbf{x} \in \mathbb{R}^n$. Then $\mathcal{A}(\mathbf{x})$ is closed and convex.

References

- Amir Beck: First-order methods in optimization, Vol. 25. SIAM, 2017.
- Heinz H. Bauschke and Patrick L. Combettes: Convex analysis and monotone operator theory in Hilbert spaces, Vol. 408. New York: Springer, 2011.