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Vector Jans oot

Let R" be the n-dimensional real vector space, a column vector of R" is denoted by a € R", with

a;
az
a—=

an

m The number g; is called the i'th element/component of the vector a.

NB: By default we refer vector as column vector.
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Matrix

A matrix with m rows and n columns is called an m x n matrix and denoted by

aii1 dip ain
dz1 0422 azn c RM

am,l am,2 am,n

m The identity matrix of size n is a diagonal matrix
1
1
Id, =
1
nxn
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Vector norm A=l

/NI SJTU

Definition - Vector inner product

Let x,y € R", their inner product or dot product returns a scalar

(x|y) = Zx,y,

m Alternative notation
x'y.

m Given any x,y € R", their distance is

Ix =yl = Vx—y|x—y).
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Vector norm _ wsdL

Definition - Vector p-norm

Let x € R" be a vector and p > 1, then the p-norm (also called /,-norm) of x is defined by

n 1/p
Ixll, = (Z |Xi|”> :
i=1

Vector spaces Norms 0080 0O 00 00O 000 0O 0000 O 4/22



Vector norm L

s IMNy=zsotul 1L

Definition - Vector p-norm

Let x € R" be a vector and p > 1, then the p-norm (also called /,-norm) of x is defined by

n 1/p
Ixll, = <Z |Xi|”> :
i=1

A norm must satisfies
m Positivity: x|, > 0, [x], = 0if and only if x = 0.
m Homogeneity: |rx|, = [r[[x[,, r € R.

m Triangle inequality: |x +y|\p < ”pr + Hpr.
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Vector norm Azl L

Example - /3-norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of x

n 2
Ixlly = /2o bl = V.

m ||x|| without subscript 2 is also used to denote /5-norm.
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Vector norm ~~e=rslL

- 7

Example - /3-norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of x

n 2
Ixlly = /2o bl = V.

m ||x|| without subscript 2 is also used to denote /5-norm.

Example - /;-norm

Let p = 1 we obtain the ¢;-norm of x
n
Il = Dy il

Vector spaces Norms 0080 00 00 00O 000 0O 0000 O 4/22



Vector norm s L

Example - /3-norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of x

n 2
Ixlly = /2o bl = V.

m ||x|| without subscript 2 is also used to denote /5-norm.

Example - /;-norm

Let p = 1 we obtain the ¢;-norm of x

n
Ixlly = i bl

Example - /,-norm

The infinity norm of x is defined by

x|, = i[-
el = max bl

=1,...,
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Vector norm
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Definition - Vector inner product

Let x,y € R", their inner product or dot product returns a scalar

(x|y) = Zx,y,

Theorem - Cauchy-Schwarz inequality

For any two vectors x and y in R", the Cauchy-Schwarz inequality

[ [y)| < lixllly]
holds. Furthermore, equality holds if and only if x = ay for some o € R.

Vector spaces Norms 0080 0O 00 00O 000 0O 0000 O 4/22
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Definition - Dual norm

Let | - || be a norm defined on R", the associated dual norm, denoted by | - ||, is defined as
vl = sup {{v[x) : x| <1}.

Vector spaces Norms 0008 0O 00 00O 000 0O 0000 O 5/22



Dual norm .

s IMNy=zsotul 1L

Definition - Dual norm
Let | - || be a norm defined on R", the associated dual norm, denoted by | - ||, is defined as

vl = sup {{v[x) : x| <1}.

The dual of the Euclidean norm is the Euclidean
norm

sup { v %) : el < 1} = vl

Vector spaces Norms 0008 0O 00 00O 000 0O 0000 O 5/22



Dual norm N
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Definition - Dual norm
Let | - || be a norm defined on R", the associated dual norm, denoted by | - ||, is defined as

vl = sup {{v[x) : x| <1}.

The dual of the #;-norm is the /,.-norm

sup {v 1) ¢ Ixly <1} = Voo
Recall that in R?

<V |X> = VX1 + VaXs.
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Dual norm P

MF=osstul L
Definition - Dual norm

Let | - || be a norm defined on R", the associated dual norm, denoted by | - ||, is defined as
vl = sup {{v[x) : x| <1}.

’U/ The dual of the /,,-norm is the /;-norm
sup { (v 1) © Ixlo <1} =Vl
o Recall that in R?
v <V |X> = VX1 + VaXs.

Vector spaces Norms 0008 0O 00 00O 000 0O 0000 O 5/22



Dual norm pans—ontl

Proposition - Dual norm

Given p,q > 1, ¢,-norm and ¢;-norm are dual of each other if
1 1
—+-=1
b aq
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Dual norm STN\FzsITU

Proposition - Dual norm

Given p,q > 1, ¢,-norm and ¢;-norm are dual of each other if
1 1
—+-=1
p q

Theorem - generalized Cauchy-Schwarz inequality

Given any nonzero x € R" andv € R", there holds

(vix/Ixl) <sup {(v]y) : Iyl <1} =|vl, = (v ]x) <|v],[x|
which holds for all v and x.

m The inequality is tight in the sense that, for any x there exists a v such that the equality
holds, and vice versa.

Vector spaces Norms 0008 0O 00 00O 000 0O 0000 O 5/22
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Definition, closedness



Convex sets A=

Definition - Convex set

A subset S of R" is convex if for any x,y € Sand X € [0, 1], there holds
M+ (1—AyeS.
A+ (1 — Ny is called the convex combination of x and y.

Convex sets 0000 @0 00 000 000 0O 0000 O 6/22



Convex sets as *\Fsrui

Definition - Convex set

A subset S of R" is convex if for any x,y € Sand X € [0, 1], there holds
M+ (1—AyeS.
A+ (1 — Ny is called the convex combination of x and y.

Example - Hyper plane and half space

Givena € R"and b € R,
m Hyper plane

m Half space

Convex sets 0000 @0 00 000 000 0O 0000 O 6/22



Convex sets rssmul

Proposition - Some properties

m Let S be a convex set, then 35S = {Bx : X E S} is convex.

m letS;,i=1,2,...,mbe afamily of convex sets, then

n s

i=1,2,...,m
is convex.
m Let S;, S, be two convex sets, then
S1+S and S — S

are convex.

Convex sets 0000 @0 00 000 000 OO 0000 O 6/22



Open and closed sets - =
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Definition - Interior point

An elementx € S C R" is called an interior point of S if there Je > 0 for which

{y y — x| < e} cs.

m The interior of S, i.e. int(S), denotes the set of all interior points of S.

Convex sets 0000 O® 00 000 000 0O 0000 O 7/22



Open and closed sets S

s IMNy=zsotul 1L

Definition - Interior point

An elementx € S C R" is called an interior point of S if there Je > 0 for which

{y y — x| < e} cs.

m The interior of §, i.e. int(S), denotes the set of all interior points of S.

Aset Sisopen if int(S) = S, it is closed if
R"\S={xeR" : x¢5S}

is open.

Convex sets 0000 O® 00 000 000 0O 0000 O 7/22



Open and closed sets Arg==zsorul

Definition - Interior point

An elementx € S C R" is called an interior point of S if there Je > 0 for which

{y y — x| < e} cs.

m The interior of §, i.e. int(S), denotes the set of all interior points of S.

Aset Sisopen if int(S) = S, it is closed if
R"\S={xeR" : x¢5S}

is open.

The closure and boundary of S are defined as
c(§) =R"\ int(R"\S) and bd(S) = cl(S) \ int(S).

Convex sets 0000 O® 00 000 000 0O 0000 O 7/22



Non-expansive operators

Non-expansiveness and fixed-point



Non-expansive operator

/S INF=rsutull 1L

Definition - Non-expansive operator

Let S be a non-empty subset of R"” and let & : S — R". Then F is non-expansive if it is Lipschitz
continuous with constant 1, i.e.

(,y €S) [FO)—Fy)l <lx—yl.

Non-expansive operators 0000 0O 80 000 000 0O 0000 O 8/22



Non-expansive operator NgesorulL

Definition - Non-expansive operator

Let S be a non-empty subset of R"” and let & : S — R". Then F is non-expansive if it is Lipschitz
continuous with constant 1, i.e.

(,y €S) [FO)—Fy)l <lx—yl.

Definition - Firmly non-expansive operator

F is firmly non-expansive if
(VY €S) [F) = Fy)|* +(d = F)(x) — (id = F)(y)[* < |x —y[*.

The following are equivalent
m F is firmly non-expansive.
m Id — F is firmly non-expansive.

m 2F — Id is non-expansive.

Non-expansive operators 0000 0O 80 000 000 0O 0000 O 8/22



Non-expansive operator =

/T NI/ ZsJTU L

Definition - Non-expansive operator

Let S be a non-empty subset of R"” and let & : S — R". Then F is non-expansive if it is Lipschitz
continuous with constant 1, i.e.

(,y €S) [FO)—Fy)l <lx—yl.

Definition - Averaged non-expansiveness

Let S be a non-empty subset of R" and let F : S — R". Then F is a-averaged non-expansive if
there exist a €]0, 1] and a non-expansive operator R such that

F=(1-a)d+aR.

Non-expansive operators 0000 0O 80 000 000 0O 0000 O 8/22



Fixed-points of non-expansive operator A

s IMNy=zsotul 1L

Definition - Non-expansive operator

Let S be a non-empty convex subset of R” and F : S — R" be a non-expansive operator, the
set of fixed points of F, denoted by fix(F), is defined by

fix(F) = {x €S : x=TF(x)}.

Non-expansive operators 0000 0O 08 00O 000 0O 0000 O 9/22



Fixed-points of non-expansive operator Ars=sU]

Definition - Non-expansive operator

Let S be a non-empty convex subset of R” and F : S — R"” be a non-expansive operator, the
set of fixed points of F, denoted by fix(F), is defined by

fix(F) = {x €S : x=TF(x)}.

Proposition - Convexity

Let S be a non-empty closed convex subset of R" and let 7 : S — R" be non-expansive, then
the set of fixed points fix(F) is closed and convex.

Non-expansive operators 0000 0O 08 00O 000 0O 0000 O 9/22



Fixed-points of non-expansive operator A=l

Definition - Non-expansive operator

Let S be a non-empty convex subset of R” and F : S — R"” be a non-expansive operator, the
set of fixed points of F, denoted by fix(F), is defined by

fix(F) = {x €S : x=TF(x)}.

Proposition - Convexity

Let S be a non-empty closed convex subset of R" and let 7 : S — R" be non-expansive, then
the set of fixed points fix(F) is closed and convex.

Theorem - Browder-Gohde-Kirk

Let S be a non-empty bounded closed convex subset of R” and F : S — S be a non-expansive
operator. Then

fix(F) # 0.

Non-expansive operators 0000 0O 08 00O 000 0O 0000 O 9/22
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Fejér monotonicity, fixed-point iteration



Sequence and limits

A number x* € ]@ is called the limit of the sequence {x(")}keN if for any positive ¢ > 0 there
exists a number k > 0 such that for all k > k, there holds

X0 —x*| < e.
That is, x®) € [x* — €, x* + €| for all k > k. In this case, we write

* k)

x* = lim x{
k—+o00

or
xK) s x>,

m A sequence that has a limit is called a convergent sequence.

m Extension to sequences in R".

Fejér monotonicity eco
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Sequence and limits STNFzsTU

Limit of convergent sequence A convergent sequence has only one limit.

Fejér monotonicity eco 10/22



Sequence and limits N
Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Fejér monotonicity o0 10/22



Sequence and limits N
Limit of convergent sequence A convergent sequence has only one limit.
Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in R is convergent.

Fejér monotonicity o0 10/22



Sequence and limits TNEsITU

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in R is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Fejér monotonicity eco

10/22



Sequence and limits TN\FESITU
Limit of convergent sequence A convergent sequence has only one limit.
Boundedness and convergence Every convergent sequence is bounded.
Monotonicity and convergence Every monotone bounded sequence in R is convergent.
Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Bolzano-Weierstrass Any bounded sequence has a convergent subsequence.

Fejér monotonicity o0 10/22



Fejér monotonicity =
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Definition - Fejér monotonicity

Let S be a non-empty subset of R" and let {xX)},c be a sequence in R". Then {x)},cy is
Fejér monotone with respect to S if

(vx € S)(keN) |x*k+) — x| < |x® —x|.

Fejér monotonicity 0000 00 00 080 000 0O 0000 O 11/22



Fejér monotonicity o A
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Definition - Fejér monotonicity

Let S be a non-empty subset of R" and let {xX)},c be a sequence in R". Then {x)},cy is
Fejér monotone with respect to S if

(ixeS)(keN) x4 x| < x® —x].

Theorem - Fejér monotonicity and convergence

Let S be a nonempty subset of R" and let {x(k)}keN be a sequence in R". Suppose that
{x®)} e is Fejér monotone with respect to S, then

m {x},cy is bounded. For every x € S, {|x*) — x| }xen converges.
If every sequential cluster point of {x(k) }ken belongs to S, then

m {x"9},cy converges to a point in S.

Fejér monotonicity 0000 00 00 080 000 0O 0000 O 11/22



Fixed-point iteration PN

Definition - Fixed-point iteration

Let S be a nonempty closed convex subset of R", let operator F : S — S be non-expansive such
that fix(F) # (. Letx(¥) € S, and set

(vk e N) x®+D = F(xb),
Suppose that x¥) — F(x*)) — 0, then

m {x®)} ey converges to a point in fix(F).

m Only non-expansiveness does not guarantee convergence.

Fejér monotonicity 0000 00 00 CO® 000 0O 0000 O 12/22



Fixed-point iteration ~e=ra Ul
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Theorem - Groetsch

Let S be a nonempty closed convex subset of R", let operator F : S — S be non-expansive such
that fix(F) # 0. Let {\ }«ew be a sequence in [0, 1] such that >, A\(1 — Ax) = 400, and let
x) €5, set

(vk e N)  x® D = x® 4 N (Fx®@) —x®).
Then the following hold
m {x®},cy is Fejér monotone with respect to fix(F).
m {F(x®) —x®}n converges to 0.

m {x},cxy converges to a point in fix(F).

m When F is a-averaged non-expansive, then for { A\ ke, the condition changes to

Xk € 0,1/a] and
S A (i - )\k) = +o0.
k

Fejér monotonicity 12/22
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Functions

Let S C R", a function F is a mapping from S to [—o0, +0¢], i.e.
F:S— [—00,+0].

B The domain of F is
dom(F) = {x €5 : F(x) < —|—oo}.

m The graph of F is

gra(F) = {(X, V) ESXR : F(x) = v},
m The epi graph of F is

epi(F) = {(x, V) €SxR : F(x) < V},
B The sub-level set of F is

levy(F) & {x €5 : F(x) < v}.

Convex functions e00

13/22



Functions

Convex functions

—l
i oo
epi(F)
| era(F)
X1 leve, (F) X2 dom(F)

0000 00 00 OOO @00 OO 0000 O
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Closed function - -
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Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can
take any real value, as well as the infinite values —oo and +oo.

Convex functions 0000 0O 00 00O 080 OO 0000 O 14/22



Closed function s L

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can
take any real value, as well as the infinite values —oo and +oo.

Example - Indicator function

Let S C R" be a set, the indicator function of S is an extended real-valued function given by

0: xe8,

tsx) = {—i—oo © X ¢S

Convex functions 0000 0O 00 00O 080 OO 0000 O 14/22



Closed function
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Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can
take any real value, as well as the infinite values —oo and +oo.

Example - Indicator function

Let S C R" be a set, the indicator function of S is an extended real-valued function given by

) = 0: xe8,
= +o0: X¢8S.

Afunction F : R" — [—o00, +00] is closed if
m epi-graph is closed.
m sub-level set is closed.

Convex functions 0000 0O 00 00O 080 OO 0000 O 14/22
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Definition - Convex function

Let S € R" be a non-empty convex set, a function F : S — R is said to be convex if for any
x,y € Sand any A € (0, 1), there holds

F(A + (1= A)y) < AF(x) + (1 — N)F(y).

m If —F is convex, then F is said to be concave.

Convex functions 0000 0O 00 00O 00@ OO 0000 O 15/22



Convex functions s L

Definition - Convex function

Let S € R" be a non-empty convex set, a function F : S — R is said to be convex if for any
X,y € Sand any \ € (0,1), there holds

F(A + (1= A)y) < AF(x) + (1 — N)F(y).

m If —F is convex, then F is said to be concave.

Example - Examples on R

= Absolute value function F(x) = |x| is closed and convex.

m The function F(x) = — log(x) is closed and convex.

Convex functions 0000 0O 00 00O 00@ OO 0000 O 15/22



Convex functions - =
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Definition - Convex function

Let S € R" be a non-empty convex set, a function F : S — R is said to be convex if for any
x,y € Sand any A € (0, 1), there holds

F(A + (1= A)y) < AF(x) + (1 — N)F(y).

m If —F is convex, then F is said to be concave.

Definition - Strong convexity

Function F : R" — R is strongly convex if dom(F) is convex, there exists v > 0 such that
2
FO) — x|

is convex.

Convex functions 0000 0O 00 00O 00@ OO 0000 O 15/22
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Let F : S — R be a convex function and 8 > 0, then SF is convex.

Convex functions coe 15/22



Convex functions Ne=rs U
Let F : S — R be a convex function and 8 > 0, then SF is convex.

Let F1, F; : S — R be convex functions, then F; + F5 is convex.

m Sum of finitely many convex functions ZLI Fi...

Convex functions coe 15/22



Convex functions Ne=rs U
Let F : S — R be a convex function and 8 > 0, then SF is convex.

Let F1, F; : S — R be convex functions, then F; + F5 is convex.
m Sum of finitely many convex functions ZLI Fi...

Let F : S — R be a convex function and (a;)f_; €]0, 1[ such that ) . o = 1, then

FOOo aixi) < D75 aif (x;).

Convex functions coe 15/22



Convex functions N
Let F : S — R be a convex function and 8 > 0, then SF is convex.

Let F1, F; : S — R be convex functions, then F; + F5 is convex.
m Sum of finitely many convex functions 3°% | Fi...
Let F : S — R be a convex function and (a;)f_; €]0, 1[ such that ) . o = 1, then

F(O o aixi) < 375 aiF(x;).

Let S C R be a non-empty convex set and F : S — R a convex function, then F is continuous
along the interior of S.

Convex functions ooce 15/22



Convex functions N
Let F : S — R be a convex function and 8 > 0, then SF is convex.

Let F1, F; : S — R be convex functions, then F; + F5 is convex.
m Sum of finitely many convex functions 3°% | Fi...

Let F : S — R be a convex function and (a;)f_; €]0, 1[ such that ) . o = 1, then

F(O o aixi) < 375 aiF(x;).

Let S C R be a non-empty convex set and F : S — R a convex function, then F is continuous
along the interior of S.

Let F : S — R be a convex function and any a € R, then the sub-level set is convex.

Convex functions ooce 15/22



Convex functions R
Let F : S — R be a convex function and 8 > 0, then SF is convex.

Let F1, F; : S — R be convex functions, then F; + F5 is convex.
m Sum of finitely many convex functions Z;‘Zl Fi...

Let F : S — R be a convex function and (a;)f_; €]0, 1[ such that ) . o = 1, then

F(Zi CL’,'X,‘) < Zi Oé,'F(X,').

Let S C R be a non-empty convex set and F : S — R a convex function, then F is continuous
along the interior of S.

Let F : S — R be a convex function and any a € R, then the sub-level set is convex.

Definition - I, (R")

The set of all proper, closed and convex functions on R" is denoted as I)(R").

Convex functions 0000 0O 00 00O 00@ OO 0000 O 15/22
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Gradient TN N

Definition - Directional derivative

Let S be a nonempty subset of R”, F : R” — R, and x € dom(F). The directional derivative of F

at x in the directiony is
F —F
VyF(x) = lim &) ZFO),
al0 (0%

provided that the limits exists.

Differentiability 0000 00 00 00O 000 @0 0000 O 16/22



Gradient e

Definition - Directional derivative

Let S be a nonempty subset of R”, F : R” — R, and x € dom(F). The directional derivative of F
at x in the directiony is
F(x — F(x
VyF(x) = lim &) ZFO),
al0 (0%

provided that the limits exists.

Definition - Gradient

Let S be a subset of R", F : S — R, and suppose that F is differentiable at x € S. Then, there
exists a unique vector VF(x) € R" such that such

(W € R" with [y| =1) VF(x) = ({y| VFx)).

Differentiability

0000 0O 00 00O 000 @0 0000 O 16/22



Gradient aas—etul

The (Gateaux) gradient of F atx € S C dom(F) is an n-dimensional vector
OF(x)

8X1
OF (x)

VFx) = | 7 | eR",

OF (x)
OXn

where the partial derivative is defined by
OF(x)  lim F(x + ce;) — F(x) .
OXi a0 «

Differentiability o0 16/22



Gradient _ remsd

The (Gateaux) gradient of F at x € S C dom(F) is an n-dimensional vector
OF(x)
8X1
OF (x)

VF(x)= | ** | eR",

OF (x)
OXn

where the partial derivative is defined by
OF(x)  lim F(x + ae;) — F(x) .
oX; alo o

Proposition - Characterization of convexity

Let S C R" be an open set and F : S — R be convex and smooth differentiable, then
m F(y) > F(x) + (VF(x) |y — x).
m (y —x | VF(y) — VF(x)) > 0.

Differentiability 0000 00 00 00O 000 @0 0000 O 16/22



Subdifferentiability Are=es U]

Definition - Subdifferential

Let R : R" —] — 00, +00] be proper convex. The subdifferential of R at is the set-valued
operator

OR:R"=R":x — {VER” (W eR") (y—x|v)+R(x) < R(y)}.
Letx € R", then R is subdifferentiable at x if OR(x) # (.
m The elements of OR(x) are the subgradients of R at x.

Differentiability 0000 00 00 00O 000 O® 0000 O 17/22



Subdifferentiability Aa=smd L

Definition - Subdifferential

Let R : R" —] — 00, +00] be proper convex. The subdifferential of R at is the set-valued
operator

OR:R"=R":x — {VGR” (W eR") (y—x|v)+R(x) < R(y)}.
Letx € R", then R is subdifferentiable at x if OR(x) # (.
m The elements of JR(x) are the subgradients of R at x.

Example - Indicator function

Let S be a non-empty convex subset of R". Then

Aus(x) = Ns(x) = {{V eER" : sup(v|S—x) < Og) ,;;57

Differentiability 0000 00 00 00O 000 O® 0000 O 17/22



Subdifferentiability PSS
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Definition - Subdifferential

Let R : R" —] — 00, +00] be proper convex. The subdifferential of R at is the set-valued
operator

OR:R"=R":x — {VER” (W eR") (y—x|v)+R(x) < R(y)}.
Letx € R", then R is subdifferentiable at x if OR(x) # (.

m The elements of OR(x) are the subgradients of R at x.

Proposition - Convexity of subdifferential

Let R : R" —] — 00, +00| be proper convex and x € dom(R). Then
® dom(9R) C dom(R).

m OR(x) is closed and convex.
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Convex minimization problem

Minimizers, and characterizations



Global and local minimum Are=rs U

Definition - Infimum and minimum

Let ® : S — [—00, +0o0] and let C be a subset of S.

m The infimum of ® over Cis inf ®(C); it is also denoted by
el 2%

m P achieves its infimum over C if there exists y € C such that
®(y) = inf ®(C).
In this case, we write

®(y) =min ®(C) or P(y) = I?e%l D(x)

and call min ®(C) the minimum of ® over C.
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Global and local minimum P

Definition - Global and local minimum

Let @ : R" —]—o00, +00] be proper, and let x € R"

m X is a (global) minimizer of ® if
®(x) = inf ®(R")
and ®(x) = min ®(R") € R.
m The set of minimizers of ® is denoted by Argmin(®).

m If Argmin(®) is a singleton, its unique element is denoted by argm%Rn D (x).
xER"

Let S be a subset of R" such that S N dom(®) # 0
m A minimizer of ® over S is a minimizer of ® + ¢s.

m If 3p > 0 such that x is a minimizer of ® over B(x; p), then x is a local minimizer of ®.
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Global and local minimum A=l

Definition - Global and local minimum

Let @ : R" —]—o00, +00] be proper, and let x € R"

m X is a (global) minimizer of ® if
®(x) = inf ®(R")
and ®(x) = min ®(R") € R.
m The set of minimizers of ® is denoted by Argmin(®).

m If Argmin(®) is a singleton, its unique element is denoted by argm%Rn D (x).
XER"

Let S be a subset of R" such that S N dom(®) # 0
m A minimizer of ® over S is a minimizer of ® + ¢s.

m If 3p > 0 such that x is a minimizer of ® over B(x; p), then x is a local minimizer of ®.

Theorem - Convexity and local minimizer

Let ® : R" —]—o00, +00] be proper convex. Then every local minimizer of ® is a minimizer.

Convex minimization problem 0000 00 00 00O 000 OO €000 O 18/22



Fermat’s rule ans—ant

Theorem - Fermat’s rule

Let & : R" —] — 00, +00] be proper. Then
Argmin(®) = zer(9®) = {x ER": 0¢e 8<I>(x)}.
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Characterization of minimizers ~=s

Problem - A non-smooth problem
Let F € I[H(R"), K : R" — R™ be non-zero bounded linear and R € I(R™)
min {(I)(x) () o+ R(Kx)},
X
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Characterization of minimizers ~=s

Problem - A non-smooth problem
Let F € I[H(R"), K : R" — R™ be non-zero bounded linear and R € I(R™)
min {(I)(x) () o+ R(Kx)},
X

m In general,
0P = 9(F+RoK) # OF +K* o OR o K.
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Characterization of minimizers Aa=es

Problem - A non-smooth problem
Let F € I[H(R"), K : R" — R™ be non-zero bounded linear and R € I(R™)
min {(I)(x) () o+ R(Kx)},
X

m In general,
0P = 9(F+RoK) # OF +K* o OR o K.

m Suppose dom(R) N Kdom(F) # 0,
OF +K* 0o ORoK C O(F + RoK).
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Characterization of minimizers Pr———

Proposition - Characterization of minimizers
Let F € TH)(R"),K : R" — R™ be non-zero bounded and R € I\,(R™). Then the following holds
m zer(OF + K* 0 OR oK) C Argmin(F 4 RoK).
m Suppose Argmin(F + RoK) # () and
ri(dom(R)) Nri(Kdom(F)) # 0.

Then
Argmin(F + R oK) = zer(9F + K* 0 OR oK) # 0.

Let x* € Argmin(F + R oK), the corresponding optimality condition reads
0 € OF(x*) + K*OR(Kx™).
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Monotone operators =

/INT=zsuTul 1L

Definition - Set-valued operator

An operator A : R" =2 R" is set-valued if for every x € R", A(x) is a subset of R". Its graph is
defined by

gra(A) = {(x,u) ER"xR" :uc A(x)}.
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Monotone operators Are=rs

Definition - Set-valued operator

An operator A : R" =2 R" is set-valued if for every x € R", A(x) is a subset of R". Its graph is
defined by

gra(A) = {(x,u) ER"xR" : uc A(x)}.

Definition - Monotone operator
Let A : R" = R". Then A is monotone if
(V(x,u) € gra(A))((y,v) € gra(A)) (x—y|u—v)>0.

It is moreover maximally monotone if gra(.A) cannot be contained properly by the graph of
another monotone operator 5.
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Monotone operators Ae=srdL

Definition - Monotone operator
Let A : R" = R". Then A is monotone if
(V(x,u) € gra(A))((y,v) € gra(A)) (x—y|u—v)>0.
It is moreover maximally monotone if gra(.A) cannot be contained properly by the graph of
another monotone operator 5.

Theorem - Moreau
Let R € IH)(R"). Then OR is maximally monotone.
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Monotone operators Ae=srdL

Definition - Monotone operator
Let A : R" = R". Then A is monotone if
(V(x,u) € gra(A))((y,v) € gra(A)) (x—y|u—v)>0.
It is moreover maximally monotone if gra(.A) cannot be contained properly by the graph of
another monotone operator 5.

Theorem - Moreau
Let R € IH)(R"). Then OR is maximally monotone.

Proposition -
Let A : R" =2 R" be maximally monotone and x € R". Then A(x) is closed and convex.
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