An Introduction to Non-smooth Optimization

Lecture 01 - Mathematical Background

Jingwei LIANG

Institute of Natural Sciences, Shanghai Jiao Tong University

Email: optimization.sjtu@gmail.com Office: Room 355, No. 6 Science Building

Outline

[Vector spaces](#page-2-0)

[Convex sets](#page-17-0)

³ [Non-expansive operators](#page-24-0)

[Fejér monotonicity](#page-31-0)

[Convex functions](#page-42-0)

[Differentiability](#page-57-0)

[Convex minimization problem](#page-65-0)

Vector

Let \mathbb{R}^n be the n -dimensional *real vector space*, a column vector of \mathbb{R}^n is denoted by $\bm{a}\in\mathbb{R}^n$, with

$$
\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}.
$$

The number *aⁱ* is called the *i*'th element/component of the vector *a*.

NB: By default we refer vector as column vector.

Matrix

A matrix with *m* rows and *n* columns is called an $m \times n$ matrix and denoted by

$$
\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix} \in \mathbb{R}^{m \times n}.
$$

■ The identity matrix of size *n* is a diagonal matrix

$$
\mathbf{Id}_n = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}_{n \times n}
$$

.

 $M \leftrightarrow$

Definition - Vector inner product

Let $\textbf{x},\textbf{y}\in\mathbb{R}^n$, their inner product or dot product returns a scalar

$$
\langle \pmb{x} \mid \pmb{y} \rangle = \sum_{i=1}^n x_i y_i.
$$

Alternative notation

x T y.

Given any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, their distance is

$$
\|\mathbf{x}-\mathbf{y}\|=\sqrt{\langle \mathbf{x}-\mathbf{y}\,|\,\mathbf{x}-\mathbf{y}\rangle}.
$$

[Vector spaces](#page-2-0) [Norms](#page-4-0) 4/**22**

Definition - Vector *p***-norm**

Let $\bm{x} \in \mathbb{R}^n$ be a vector and $p \geq 1$, then the p -norm (also called ℓ_p -norm) of \bm{x} is defined by

$$
\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}.
$$

Definition - Vector *p***-norm**

Let $\bm{x} \in \mathbb{R}^n$ be a vector and $p \geq 1$, then the p -norm (also called ℓ_p -norm) of \bm{x} is defined by

$$
\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}
$$

.

A norm must satisfies

- Positivity: $\|\mathbf{x}\|_p \geq 0$, $\|\mathbf{x}\|_p = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- $\textsf{Homogeneity: } \|\mathsf{rx}\|_p = |r| \|\mathbf{x}\|_p, \ r \in \mathbb{R}.$
- Triangle inequality: $\|\pmb{x}+\pmb{y}\|_p \leq \|\pmb{x}\|_p + \|\pmb{y}\|_p.$

Example - ℓ_2 -norm (Euclidean norm)

Let $p = 2$ we obtain the Euclidean norm of **x**

$$
\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{\mathbf{x}^T \mathbf{x}}.
$$

 $||x||$ without subscript 2 is also used to denote ℓ_2 -norm.

Example - ℓ_2 -norm (Euclidean norm)

Let $p = 2$ we obtain the Euclidean norm of **x**

$$
\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{\mathbf{x}^T \mathbf{x}}.
$$

 $||x||$ without subscript 2 is also used to denote ℓ_2 -norm.

Example - ℓ_1 -norm

Let $p = 1$ we obtain the ℓ_1 -norm of **x**

$$
\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.
$$

Example - ℓ_2 -norm (Euclidean norm)

Let $p = 2$ we obtain the Euclidean norm of **x**

$$
\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{\mathbf{x}^\mathsf{T} \mathbf{x}}.
$$

 $||x||$ without subscript 2 is also used to denote ℓ_2 -norm.

Example - ℓ_1 -norm

Let $p = 1$ we obtain the ℓ_1 -norm of **x**

$$
\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.
$$

Example - ℓ_{∞} -norm

The infinity norm of *x* is defined by

$$
\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|.
$$

Definition - Vector inner product

Let $\textbf{x},\textbf{y}\in\mathbb{R}^n$, their inner product or dot product returns a scalar

$$
\langle \pmb{x} \mid \pmb{y} \rangle = \sum_{i=1}^n x_i y_i.
$$

Theorem - Cauchy-Schwarz inequality

For any two vectors **x** and **y** in \mathbb{R}^n , the Cauchy-Schwarz inequality

 $|\langle \mathbf{x} | \mathbf{y} \rangle| \leq \| \mathbf{x} \| \mathbf{y} \|$

holds. Furthermore, equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as

$$
\|\mathbf{v}\|_*=\sup\big\{\langle\mathbf{v}\,|\,\mathbf{x}\rangle\,:\,\|\mathbf{x}\|\leq 1\big\}.
$$

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as $\|\mathbf{v}\|_* = \sup \{\langle \mathbf{v} | \mathbf{x} \rangle : \|\mathbf{x}\| \leq 1\}.$

The dual of the **Euclidean norm** is the **Euclidean norm**

$$
\sup \Big\{\langle \pmb{\textbf{v}} \, | \, \pmb{\textbf{x}} \rangle \, : \, \|\pmb{\textbf{x}}\|_2 \leq 1 \Big\} = \|\pmb{\textbf{v}}\|_2.
$$

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as $\|\mathbf{v}\|_* = \sup \{\langle \mathbf{v} | \mathbf{x} \rangle : \|\mathbf{x}\| \leq 1\}.$

The dual of the ℓ_1 -norm is the ℓ_{∞} -norm

$$
\sup \Big\{\langle {\boldsymbol v}\,|\, {\boldsymbol x}\rangle\ :\ \|{\boldsymbol x}\|_1\leq 1\Big\}=\|{\boldsymbol v}\|_\infty.
$$

Recall that in \mathbb{R}^2

$$
\langle \pmb{v} \, | \, \pmb{x} \rangle = \pmb{v}_1 \pmb{x}_1 + \pmb{v}_2 \pmb{x}_2.
$$

Definition - Dual norm

Let $\|\cdot\|$ be a norm defined on \mathbb{R}^n , the associated *dual norm*, denoted by $\|\cdot\|_*$ is defined as $\|\mathbf{v}\|_* = \sup \{\langle \mathbf{v} | \mathbf{x} \rangle : \|\mathbf{x}\| \leq 1\}.$

The dual of the ℓ_{∞} -norm is the ℓ_1 -norm

$$
\sup \Big\{\langle \pmb v \mid \pmb x\rangle \ :\ \|\pmb x\|_\infty \leq 1\Big\} = \|\pmb v\|_1.
$$

Recall that in \mathbb{R}^2

$$
\langle \pmb{v} \, | \, \pmb{x} \rangle = \pmb{v}_1 \pmb{x}_1 + \pmb{v}_2 \pmb{x}_2.
$$

Proposition - Dual norm

Given $p, q \geq 1$, ℓ_p -norm and ℓ_q -norm are dual of each other if

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$

Proposition - Dual norm

Given $p, q \geq 1$, ℓ_p -norm and ℓ_q -norm are dual of each other if

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$

Theorem - generalized Cauchy-Schwarz inequality

Given any nonzero $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{v} \in \mathbb{R}^n$, there holds

$$
\langle \pmb{\mathsf{v}} \, | \, \pmb{\mathsf{x}} / \| \pmb{\mathsf{x}} \| \rangle \leq \sup \big\{ \langle \pmb{\mathsf{v}} \, | \, \pmb{\mathsf{y}} \rangle \, : \, \| \pmb{\mathsf{y}} \| \leq 1 \big\} = \| \pmb{\mathsf{v}} \|_* \quad \Longrightarrow \quad \langle \pmb{\mathsf{v}} \, | \, \pmb{\mathsf{x}} \rangle \leq \| \pmb{\mathsf{v}} \|_* \| \pmb{\mathsf{x}} \|
$$

which holds for all *v* and *x*.

■ The inequality is **tight** in the sense that, for any **x** there exists a **v** such that the equality holds, and vice versa.

Definition - Convex set

A subset *S* of \mathbb{R}^n is convex if for any $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0,1]$, there holds

$$
\lambda \mathbf{x} + (1-\lambda) \mathbf{y} \in \mathbf{S}.
$$

 λ **x** + (1 – λ)**y** is called the **convex combination** of **x** and **y**.

Definition - Convex set

A subset *S* of \mathbb{R}^n is convex if for any $\mathbf{x}, \mathbf{y} \in S$ and $\lambda \in [0,1]$, there holds

 λ **x** + $(1 - \lambda)$ **y** \in **S**.

 λ **x** + $(1 - \lambda)$ **y** is called the **convex combination** of **x** and **y**.

Example - Hyper plane and half space

Given $\boldsymbol{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$,

Hyper plane

$$
\mathsf{H} \stackrel{\text{\tiny def}}{=} \left\{ \mathbf{x} \, : \, \mathbf{a}^{\mathsf{T}} \mathbf{x} = b \right\}.
$$

Half space

$$
\mathsf{H} \stackrel{\text{\tiny def}}{=} \left\{ \mathbf{x} \, : \, \mathbf{a}^{\mathsf{T}} \mathbf{x} \leq b \right\}.
$$

Proposition - Some properties

Let *S* be a convex set, then $\beta \mathsf{S} = \big\{ \beta \mathsf{x} \ : \ \mathsf{x} \in \mathsf{S} \big\}$ is convex.

Let S_i , $i = 1, 2, ..., m$ be a family of convex sets, then

$$
\bigcap_{i=1,2,\ldots,m} S_i
$$

is convex.

 \blacksquare Let S_1 , S_2 be two convex sets, then

 $S_1 + S_2$ and $S_1 - S_2$

are convex.

Definition - Interior point

An element $\boldsymbol{x} \in S \subset \mathbb{R}^n$ is called an *interior point* of *S* if there $\exists \epsilon > 0$ for which

$$
\Big\{\mathbf{y} \ : \ \|\mathbf{y} - \mathbf{x}\| \leq \epsilon \Big\} \subset \mathsf{S}.
$$

■ The interior of *S*, *i.e.* int(*S*), denotes the set of all interior points of *S*.

Definition - Interior point

An element $\boldsymbol{x} \in S \subset \mathbb{R}^n$ is called an *interior point* of *S* if there $\exists \epsilon > 0$ for which $\left\{ y : ||y - x|| \leq \epsilon \right\} \subset S.$

■ The interior of *S*, *i.e.* int(*S*), denotes the set of all interior points of *S*.

A set *S* is **open** if $\text{int}(S) = S$, it is **closed** if

$$
\mathbb{R}^n\setminus S=\left\{\bm{x}\in\mathbb{R}^n\,:\,\bm{x}\notin S\right\}
$$

is open.

Definition - Interior point

An element $\boldsymbol{x} \in S \subset \mathbb{R}^n$ is called an *interior point* of *S* if there $\exists \epsilon > 0$ for which $\left\{ y : ||y - x|| \leq \epsilon \right\} \subset S.$

■ The interior of *S*, *i.e.* int(*S*), denotes the set of all interior points of *S*.

A set *S* is **open** if $\text{int}(S) = S$, it is **closed** if

$$
\mathbb{R}^n\setminus S=\big\{\bm{x}\in\mathbb{R}^n\,:\,\bm{x}\notin S\big\}
$$

is open.

The **closure** and **boundary** of *S* are defined as

 $\text{cl}(S) = \mathbb{R}^n \setminus \text{int}(\mathbb{R}^n \setminus S)$ and $\text{bd}(S) = \text{cl}(S) \setminus \text{int}(S)$.

[Non-expansive operators](#page-24-0)

Definition - Non-expansive operator

Let *S* be a non-empty subset of \R^n and let $\mathcal{F}:S\to \R^n.$ Then \mathcal{F} is *non-expansive* if it is Lipschitz continuous with constant 1, *i.e.*

$$
(\forall \mathbf{x}, \mathbf{y} \in S) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\| \leq \|\mathbf{x} - \mathbf{y}\|.
$$

Definition - Non-expansive operator

Let *S* be a non-empty subset of \R^n and let $\mathcal{F}:S\to \R^n.$ Then \mathcal{F} is *non-expansive* if it is Lipschitz continuous with constant 1, *i.e.*

$$
(\forall \mathbf{x}, \mathbf{y} \in S) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\| \leq \|\mathbf{x} - \mathbf{y}\|.
$$

Definition - Firmly non-expansive operator

F is *firmly non-expansive* if

$$
(\forall \mathbf{x}, \mathbf{y} \in S) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\|^2 + \|(\mathbf{Id} - \mathcal{F})(\mathbf{x}) - (\mathbf{Id} - \mathcal{F})(\mathbf{y})\|^2 \le \|\mathbf{x} - \mathbf{y}\|^2.
$$

The following are equivalent

- \blacktriangleright F is firmly non-expansive.
- *Id* − F is firmly non-expansive.
- \blacksquare 2 \mathcal{F} *Id* is non-expansive.

Definition - Non-expansive operator

Let *S* be a non-empty subset of \R^n and let $\mathcal{F}:S\to \R^n.$ Then \mathcal{F} is *non-expansive* if it is Lipschitz continuous with constant 1, *i.e.*

$$
(\forall \mathbf{x}, \mathbf{y} \in S) \quad \|\mathcal{F}(\mathbf{x}) - \mathcal{F}(\mathbf{y})\| \leq \|\mathbf{x} - \mathbf{y}\|.
$$

Definition - Averaged non-expansiveness

Let *S* be a non-empty subset of \mathbb{R}^n and let $\mathcal{F}: S \to \mathbb{R}^n.$ Then \mathcal{F} is α -averaged non-expansive if there exist $\alpha \in]0,1[$ and a non-expansive operator $\mathcal R$ such that

 $\mathcal{F} = (1 - \alpha)\mathsf{Id} + \alpha \mathcal{R}.$

Fixed-points of non-expansive operator

Definition - Non-expansive operator

Let *S* be a non-empty convex subset of \mathbb{R}^n and $\mathcal{F}: S \to \mathbb{R}^n$ be a non-expansive operator, the set of fixed points of F, denoted by $fix(\mathcal{F})$, is defined by

 $f_{\text{fix}}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \mathbf{x} \in \mathcal{S} \, : \, \mathbf{x} = \mathcal{F}(\mathbf{x}) \}.$

Fixed-points of non-expansive operator

Definition - Non-expansive operator

Let *S* be a non-empty convex subset of \mathbb{R}^n and $\mathcal{F}: S \to \mathbb{R}^n$ be a non-expansive operator, the set of fixed points of F, denoted by $fix(\mathcal{F})$, is defined by

$$
\mathrm{fix}(\mathcal{F}) \stackrel{\mathrm{{\scriptscriptstyle def}}}{=} \{ \bm{x} \in S \, : \, \bm{x} = \mathcal{F}(\bm{x}) \}.
$$

Proposition - Convexity

Let *S* be a non-empty closed convex subset of \mathbb{R}^n and let $\mathcal{F}:S\to \mathbb{R}^n$ be non-expansive, then the set of fixed points $fix(\mathcal{F})$ is *closed and convex*.

Fixed-points of non-expansive operator

Definition - Non-expansive operator

Let *S* be a non-empty convex subset of \mathbb{R}^n and $\mathcal{F}: S \to \mathbb{R}^n$ be a non-expansive operator, the set of fixed points of F, denoted by $fix(\mathcal{F})$, is defined by

$$
\mathrm{fix}(\mathcal{F}) \stackrel{\mathrm{{\scriptscriptstyle def}}}{=} \{ \bm{x} \in S \, : \, \bm{x} = \mathcal{F}(\bm{x}) \}.
$$

Proposition - Convexity

Let *S* be a non-empty closed convex subset of \mathbb{R}^n and let $\mathcal{F}:S\to \mathbb{R}^n$ be non-expansive, then the set of fixed points $fix(\mathcal{F})$ is *closed and convex*.

Theorem - Browder-Göhde-Kirk

Let *S* be a non-empty bounded closed convex subset of \mathbb{R}^n and $\mathcal{F}:S\to S$ be a non-expansive operator. Then

 $fix(\mathcal{F})\neq \emptyset$.

[Fejér monotonicity](#page-31-0)

[Fejér monotonicity, fixed-point iteration](#page-31-0)

Sequence and limits

A number $x^\star \in \mathbb{R}$ is called the limit of the sequence $\{x^{(k)}\}_{k\in\mathbb{N}}$ if for any positive $\epsilon>0$ there exists a number $\bar{k} > 0$ such that for all $k > \bar{k}$, there holds

$$
|x^{(k)}-x^\star|<\epsilon.
$$

That is, $x^{(k)} \in [x^\star - \epsilon, x^\star + \epsilon]$ for all $k \geq \bar{k}$. In this case, we write

$$
x^* = \lim_{k \to +\infty} x^{(k)}
$$

or

$$
x^{(k)}\to x^{\star}.
$$

 \blacksquare A sequence that has a limit is called a convergent sequence.

Extension to sequences in \mathbb{R}^n .

Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in $\mathbb R$ is convergent.

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in $\mathbb R$ is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in $\mathbb R$ is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Bolzano-Weierstrass Any bounded sequence has a convergent subsequence.

Fejér monotonicity

 $\sqrt{2}$

Definition - Fejér monotonicity

Let *S* be a non-empty subset of \R^n and let $\{{\bm x}^{(k)}\}_{k\in\mathbb N}$ be a sequence in $\R^n.$ Then $\{{\bm x}^{(k)}\}_{k\in\mathbb N}$ is *Fejér monotone* with respect to *S* if

$$
(\forall \mathbf{x} \in S)(k \in \mathbb{N}) \quad \|\mathbf{x}^{(k+1)} - \mathbf{x}\| \le \|\mathbf{x}^{(k)} - \mathbf{x}\|.
$$

Fejér monotonicity

Definition - Fejér monotonicity

Let *S* be a non-empty subset of \R^n and let $\{{\bm x}^{(k)}\}_{k\in\mathbb N}$ be a sequence in $\R^n.$ Then $\{{\bm x}^{(k)}\}_{k\in\mathbb N}$ is *Fejér monotone* with respect to *S* if

$$
(\forall \mathbf{x} \in S)(k \in \mathbb{N}) \quad \|\mathbf{x}^{(k+1)} - \mathbf{x}\| \le \|\mathbf{x}^{(k)} - \mathbf{x}\|.
$$

Theorem - Fejér monotonicity and convergence

Let *S* be a nonempty subset of \mathbb{R}^n and let $\{{\bm{x}}^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in $\mathbb{R}^n.$ Suppose that {*x* (*k*)}*^k*∈^N is Fejér monotone with respect to *S*, then

 $\{ \bm{x}^{(k)} \}_{k \in \mathbb{N}}$ is bounded. For every $\bm{x} \in S$, $\{ \|\bm{x}^{(k)} - \bm{x} \| \}_{k \in \mathbb{N}}$ converges.

If every sequential cluster point of $\{{\bm x}^{(k)}\}_{k\in \mathbb{N}}$ belongs to *S*, then

 $\{\boldsymbol{x}^{(k)}\}_{k\in\mathbb{N}}$ converges to a point in *S*.

Definition - Fixed-point iteration

Let *S* be a nonempty closed convex subset of \mathbb{R}^n , let operator $\mathcal{F}:\mathsf{S}\to\mathsf{S}$ be non-expansive such that $\mathrm{fix}(\mathcal{F})\neq \emptyset.$ Let $\pmb{x}^{(0)}\in \mathsf{S},$ and set

$$
(\forall k \in \mathbb{N}) \quad \mathbf{x}^{(k+1)} = \mathcal{F}(\mathbf{x}^{(k)}).
$$

Suppose that $\pmb{x}^{(k)}-\mathcal{F}(\pmb{x}^{(k)})\rightarrow\pmb{0},$ then

 $\{ {\boldsymbol{x}}^{(k)} \}_{k \in \mathbb{N}}$ converges to a point in $\mathrm{fix}(\mathcal{F}).$

■ Only non-expansiveness does not guarantee convergence.

Theorem - Groetsch

Let *S* be a nonempty closed convex subset of \mathbb{R}^n , let operator $\mathcal{F}:\mathsf{S}\to\mathsf{S}$ be non-expansive such that $\mathrm{fix}(\mathcal{F})\neq\emptyset.$ Let $\{\lambda_k\}_{k\in\mathbb{N}}$ be a sequence in $[0,1]$ such that $\sum_k\lambda_k(1-\lambda_k)=+\infty,$ and let *x* (0) ∈ *S*. Set

$$
(\forall k \in \mathbb{N}) \quad \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \lambda_k \big(\mathcal{F}(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)}\big).
$$

Then the following hold

- $\{{\bm{x}}^{(k)}\}_{k\in \mathbb{N}}$ is Fejér monotone with respect to $\mathrm{fix}(\mathcal{F}).$ $\{\mathcal{F}(\pmb{\chi}^{(k)})-\pmb{\chi}^{(k)}\}_{k\in\mathbb{N}}$ converges to $\pmb{0}.$ $\{ {\boldsymbol{x}}^{(k)} \}_{k \in \mathbb{N}}$ converges to a point in $\mathrm{fix}(\mathcal{F}).$
- **When F** is α -averaged non-expansive, then for $\{\lambda_k\}_{k\in\mathbb{N}}$, the condition changes to $\lambda_k \in [0, 1/\alpha]$ and

$$
\sum_{k} \lambda_{k} \left(\frac{1}{\alpha} - \lambda_{k} \right) = +\infty.
$$

Functions

Let $S \subset \mathbb{R}^n$, a function *F* is a mapping from *S* to $[-\infty, +\infty]$, *i.e.* $F : S \rightarrow [-\infty, +\infty]$.

■ The *domain* of *F* is

$$
\operatorname{dom}(F) \stackrel{\text{\tiny def}}{=} \Big\{ \boldsymbol{x} \in S \; : \; F(\boldsymbol{x}) < +\infty \Big\}.
$$

■ The *graph* of *F* is

$$
\operatorname{gra}(F) \stackrel{\scriptscriptstyle\rm def}{=} \Big\{ (\pmb{x},v) \in S \times \mathbb{R} \ : \ F(\pmb{x}) = v \Big\}.
$$

■ The *epi graph* of *F* is

$$
\mathrm{epi}(F) \stackrel{\text{\tiny def}}{=} \Big\{ (\pmb{x}, \pmb{v}) \in S \times \mathbb{R} \; : \; F(\pmb{x}) \leq \pmb{v} \Big\}.
$$

■ The *sub-level set* of *F* is

$$
\operatorname{lev}_{\leq v}(F) \stackrel{\scriptscriptstyle\rm def}{=} \Big\{ \boldsymbol{x} \in S \; : \; F(\boldsymbol{x}) \leq v \Big\}.
$$

Functions

 $\sqrt{\pi}$ suru \cap

Closed function

Definition - Extended real line function

An *extended real-valued function* is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and $+\infty$.

Closed function

Definition - Extended real line function

An *extended real-valued function* is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and $+\infty$.

Example - Indicator function

Let *S* ⊂ R *ⁿ* be a set, the *indicator function* of *S* is an extended real-valued function given by

$$
\iota_{\mathsf{S}}(\mathbf{x}) = \begin{cases} 0: \ \mathbf{x} \in \mathsf{S}, \\ +\infty: \ \mathbf{x} \notin \mathsf{S}. \end{cases}
$$

Closed function

Definition - Extended real line function

An *extended real-valued function* is a function defined over the entire underlying space that can take any real value, as well as the infinite values $-\infty$ and $+\infty$.

Example - Indicator function

Let *S* ⊂ R *ⁿ* be a set, the *indicator function* of *S* is an extended real-valued function given by

$$
\iota_{\mathsf{S}}(\mathbf{x}) = \begin{cases} 0: \ \mathbf{x} \in \mathsf{S}, \\ +\infty: \ \mathbf{x} \notin \mathsf{S}. \end{cases}
$$

Definition - Closed function

A function $F: \mathbb{R}^n \to [-\infty, +\infty]$ is *closed* if

epi-graph is closed.

sub-level set is closed.

Definition - Convex function

Let $S \subset \mathbb{R}^n$ be a non-empty convex set, a function $F : S \to \mathbb{R}$ is said to be **convex** if for any $x, y \in S$ and any $\lambda \in (0, 1)$, there holds

$$
F(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda F(\mathbf{x}) + (1 - \lambda)F(\mathbf{y}).
$$

If −*F* is convex, then *F* is said to be **concave**.

Definition - Convex function

Let $S \subset \mathbb{R}^n$ be a non-empty convex set, a function $F : S \to \mathbb{R}$ is said to be **convex** if for any $x, y \in S$ and any $\lambda \in (0, 1)$, there holds

$$
F(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda F(\mathbf{x}) + (1 - \lambda)F(\mathbf{y}).
$$

If −*F* is convex, then *F* is said to be **concave**.

Example - Examples on R

- Absolute value function $F(x) = |x|$ is closed and convex.
- The function $F(x) = -\log(x)$ is closed and convex.

Definition - Convex function

Let $S \subset \mathbb{R}^n$ be a non-empty convex set, a function $F : S \to \mathbb{R}$ is said to be **convex** if for any $x, y \in S$ and any $\lambda \in (0, 1)$, there holds

$$
F(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda F(\mathbf{x}) + (1 - \lambda)F(\mathbf{y}).
$$

If −*F* is convex, then *F* is said to be **concave**.

Definition - Strong convexity

Function $F: \mathbb{R}^n \to \mathbb{R}$ is strongly convex if $\mathrm{dom}(F)$ is convex, there exists $\alpha > 0$ such that

$$
F(\mathbf{x}) - \tfrac{\alpha}{2}\|\mathbf{x}\|^2
$$

is convex.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^k F_i...$

Let $F : S \to \mathbb{R}$ be a convex function and $\beta > 0$, then βF is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^k F_i...$

Let $\mathsf{F}: \mathsf{S} \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0,1[$ such that $\sum_i \alpha_i = 1,$ then $\mathsf{F}(\sum_i \alpha_i \mathbf{x}_i) \leq \sum_i \alpha_i \mathsf{F}(\mathbf{x}_i).$

Let *F* : *S* $\rightarrow \mathbb{R}$ be a convex function and $\beta > 0$, then β *F* is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^k F_i...$

Let $\mathsf{F}: \mathsf{S} \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0,1[$ such that $\sum_i \alpha_i = 1,$ then $\mathsf{F}(\sum_i \alpha_i \mathbf{x}_i) \leq \sum_i \alpha_i \mathsf{F}(\mathbf{x}_i).$

Let $S \subset \mathbb{R}$ be a non-empty convex set and $F : S \to \mathbb{R}$ a convex function, then F is continuous along the interior of *S*.

Let *F* : *S* $\rightarrow \mathbb{R}$ be a convex function and $\beta > 0$, then β *F* is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^k F_i...$

Let $\mathsf{F}: \mathsf{S} \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0,1[$ such that $\sum_i \alpha_i = 1,$ then $\mathsf{F}(\sum_i \alpha_i \mathbf{x}_i) \leq \sum_i \alpha_i \mathsf{F}(\mathbf{x}_i).$

Let $S \subset \mathbb{R}$ be a non-empty convex set and $F : S \to \mathbb{R}$ a convex function, then F is continuous along the interior of *S*.

Let $F : S \to \mathbb{R}$ be a convex function and any $\alpha \in \mathbb{R}$, then the sub-level set is convex.

Let *F* : *S* $\rightarrow \mathbb{R}$ be a convex function and $\beta > 0$, then β *F* is convex.

Let $F_1, F_2 : S \to \mathbb{R}$ be convex functions, then $F_1 + F_2$ is convex.

Sum of finitely many convex functions $\sum_{i=1}^k F_i...$

Let $\mathsf{F}: \mathsf{S} \to \mathbb{R}$ be a convex function and $(\alpha_i)_{i=1}^r \in]0,1[$ such that $\sum_i \alpha_i = 1,$ then $\mathsf{F}(\sum_i \alpha_i \mathbf{x}_i) \leq \sum_i \alpha_i \mathsf{F}(\mathbf{x}_i).$

Let $S \subset \mathbb{R}$ be a non-empty convex set and $F : S \to \mathbb{R}$ a convex function, then F is continuous along the interior of *S*.

Let $F : S \to \mathbb{R}$ be a convex function and any $\alpha \in \mathbb{R}$, then the sub-level set is convex.

Definition - $\Gamma_0(\mathbb{R}^n)$

The set of all *proper*, closed and convex functions on \mathbb{R}^n is denoted as $\Gamma_0(\mathbb{R}^n)$.

[Differentiability](#page-57-0)

Definition - Directional derivative

Let *S* be a nonempty subset of \mathbb{R}^n , $F: \mathbb{R}^n \to \mathbb{R}$, and $\pmb{x} \in \text{dom}(F)$. The *directional derivative* of *F* at *x* in the direction *y* is

$$
\nabla_{\mathbf{y}} F(\mathbf{x}) = \lim_{\alpha \downarrow 0} \frac{F(\mathbf{x} + \alpha \mathbf{y}) - F(\mathbf{x})}{\alpha},
$$

provided that the limits exists.

Definition - Directional derivative

Let *S* be a nonempty subset of \mathbb{R}^n , $F: \mathbb{R}^n \to \mathbb{R}$, and $\pmb{x} \in \text{dom}(F)$. The *directional derivative* of *F* at *x* in the direction *y* is

$$
\nabla_{\mathbf{y}} F(\mathbf{x}) = \lim_{\alpha \downarrow 0} \frac{F(\mathbf{x} + \alpha \mathbf{y}) - F(\mathbf{x})}{\alpha},
$$

provided that the limits exists.

Definition - Gradient

Let *S* be a subset of \mathbb{R}^n , $F : S \to \mathbb{R}$, and suppose that *F* is differentiable at $\pmb{x} \in S$. Then, there exists a unique vector $\nabla F(\mathbf{x}) \in \mathbb{R}^n$ such that such

$$
(\forall \mathbf{y} \in \mathbb{R}^n \text{ with } \|\mathbf{y}\| = 1) \quad \nabla_{\mathbf{y}} F(\mathbf{x}) = \langle \mathbf{y} \mid \nabla F(\mathbf{x}) \rangle.
$$

The (Gâteaux) gradient of *F* at *x* ∈ *S* ⊂ dom(*F*) is an *n*-dimensional vector

$$
\nabla F(\mathbf{x}) = \begin{bmatrix} \frac{\partial F(\mathbf{x})}{\partial x_1} \\ \frac{\partial F(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial F(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n,
$$

where the *partial derivative* is defined by

$$
\frac{\partial F(\mathbf{x})}{\partial x_i} = \lim_{\alpha \downarrow 0} \frac{F(\mathbf{x} + \alpha \mathbf{e}_i) - F(\mathbf{x})}{\alpha}.
$$

The (Gâteaux) gradient of *F* at x ∈ *S* ⊂ dom(*F*) is an *n*-dimensional vector

$$
\nabla F(\mathbf{x}) = \begin{bmatrix} \frac{\partial F(\mathbf{x})}{\partial x_1} \\ \frac{\partial F(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial F(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^n,
$$

where the *partial derivative* is defined by

$$
\frac{\partial F(\mathbf{x})}{\partial x_i} = \lim_{\alpha \downarrow 0} \frac{F(\mathbf{x} + \alpha \mathbf{e}_i) - F(\mathbf{x})}{\alpha}.
$$

Proposition - Characterization of convexity

Let $\mathsf{S}\subset\mathbb{R}^n$ be an open set and $\mathsf{F}:\mathsf{S}\to\mathbb{R}$ be convex and smooth differentiable, then

$$
\blacksquare \ \mathsf{F}(\mathbf{y}) \geq \mathsf{F}(\mathbf{x}) + \langle \nabla \mathsf{F}(\mathbf{x}) \mid \mathbf{y} - \mathbf{x} \rangle.
$$

$$
\blacksquare \ \langle \mathbf{y} - \mathbf{x} \mid \nabla F(\mathbf{y}) - \nabla F(\mathbf{x}) \rangle \geq 0.
$$

Subdifferentiability

Definition - Subdifferential

Let $R:\mathbb{R}^n\to]-\infty,+\infty]$ be proper convex. The *subdifferential* of R at is the set-valued operator

$$
\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n: \textbf{x} \rightarrow \Big\{\textbf{v} \in \mathbb{R}^n\: : \: (\forall \textbf{y} \in \mathbb{R}^n) \: \: \langle \textbf{y} - \textbf{x} \: | \: \textbf{v} \rangle + R(\textbf{x}) \leq R(\textbf{y}) \Big\}.
$$

 $\mathsf{Let}\, \mathbf{x}\in\mathbb{R}^n, \text{ then } \mathsf{R} \text{ is subdifferential} \text{ is finite.}$

The elements of ∂*R*(*x*) are the *subgradients* of *R* at *x*.

Subdifferentiability

Definition - Subdifferential

Let $R:\mathbb{R}^n\to]-\infty,+\infty]$ be proper convex. The *subdifferential* of R at is the set-valued operator

$$
\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n: \textbf{x} \rightarrow \Big\{\textbf{v} \in \mathbb{R}^n\: : \: (\forall \textbf{y} \in \mathbb{R}^n) \: \: \langle \textbf{y} - \textbf{x} \: | \: \textbf{v} \rangle + R(\textbf{x}) \leq R(\textbf{y}) \Big\}.
$$

 $\mathsf{Let}\, \mathbf{x}\in\mathbb{R}^n, \text{ then } \mathsf{R} \text{ is subdifferential} \text{ is finite.}$

The elements of ∂*R*(*x*) are the *subgradients* of *R* at *x*.

Example - Indicator function

Let *S* be a non-empty convex subset of \mathbb{R}^n . Then

$$
\partial \iota_S(\mathbf{x}) = \mathcal{N}_S(\mathbf{x}) = \begin{cases} \{ \mathbf{v} \in \mathbb{R}^n : \sup \langle \mathbf{v} | S - \mathbf{x} \rangle \leq 0 \} : \mathbf{x} \in S, \\ \emptyset : \text{o.w.} \end{cases}
$$

Subdifferentiability

Definition - Subdifferential

Let $R:\mathbb{R}^n\to]-\infty,+\infty]$ be proper convex. The *subdifferential* of R at is the set-valued operator

$$
\partial R: \mathbb{R}^n \rightrightarrows \mathbb{R}^n: \bm{x} \rightarrow \left\{\bm{v} \in \mathbb{R}^n \ : \ (\forall \bm{y} \in \mathbb{R}^n) \ \langle \bm{y} - \bm{x} \ | \ \bm{v} \rangle + R(\bm{x}) \leq R(\bm{y}) \right\}.
$$

 $\mathsf{Let}\, \mathbf{x}\in\mathbb{R}^n, \text{ then } \mathsf{R} \text{ is subdifferential} \text{ is finite.}$

The elements of ∂*R*(*x*) are the *subgradients* of *R* at *x*.

Proposition - Convexity of subdifferential

Let $R: \mathbb{R}^n \to]-\infty, +\infty]$ be proper convex and $\pmb{x} \in \text{dom}(R).$ Then

 \blacksquare dom(∂R) ⊂ dom(R).

∂*R*(*x*) is closed and convex.

[Convex minimization problem](#page-65-0)

[Minimizers, and characterizations](#page-65-0)

Global and local minimum

Definition - Infimum and minimum

Let $\Phi : S \to [-\infty, +\infty]$ and let *C* be a subset of *S*.

The infimum of Φ **over** *C* **is inf** $\Phi(C)$ **; it is also denoted by**

 $\inf_{\mathbf{x}\in C} \Phi(\mathbf{x})$.

n Φ achieves its infimum over *C* if there exists $y \in C$ such that

 $\Phi(\mathbf{y}) = \inf \Phi(\mathbf{C}).$

In this case, we write

$$
\Phi(\textbf{y}) = \min \ \Phi(\textbf{C}) \quad \text{or} \quad \Phi(\textbf{y}) = \min_{\textbf{x} \in \textbf{C}} \ \Phi(\textbf{x})
$$

and call $\min \Phi(C)$ the minimum of Φ over *C*.

Definition - Global and local minimum

Let $\Phi : \mathbb{R}^n \to]-\infty, +\infty]$ be proper, and let $\textbf{x} \in \mathbb{R}^n$

x is a (global) minimizer of Φ if

$$
\Phi(\bm{x}) = \inf \, \Phi(\mathbb{R}^n)
$$

and $\Phi(\mathbf{x}) = \min \Phi(\mathbb{R}^n) \in \mathbb{R}$.

■ The set of minimizers of Φ is denoted by $\text{Argmin}(\Phi)$.

If $\mathrm{Argmin}(\Phi)$ is a singleton, its unique element is denoted by $\mathrm{argmin}\, \Phi(\pmb{x}).$ *x*∈R*ⁿ*

Let *S* be a subset of \mathbb{R}^n such that $S \cap \text{dom}(\Phi) \neq \emptyset$

- A minimizer of Φ over *S* is a minimizer of $\Phi + \iota_S$. п
- If $\exists \rho > 0$ such that **x** is a minimizer of Φ over $\mathcal{B}(\mathbf{x}; \rho)$, then **x** is a local minimizer of Φ .

Definition - Global and local minimum

Let $\Phi : \mathbb{R}^n \to]-\infty, +\infty]$ be proper, and let $\textbf{x} \in \mathbb{R}^n$

x is a (global) minimizer of Φ if

$$
\Phi(\bm{x}) = \inf \, \Phi(\mathbb{R}^n)
$$

and $\Phi(\mathbf{x}) = \min \Phi(\mathbb{R}^n) \in \mathbb{R}$.

■ The set of minimizers of Φ is denoted by $\text{Argmin}(\Phi)$.

If $\mathrm{Argmin}(\Phi)$ is a singleton, its unique element is denoted by $\mathrm{argmin}\, \Phi(\pmb{x}).$ *x*∈R*ⁿ*

Let *S* be a subset of \mathbb{R}^n such that $S \cap \text{dom}(\Phi) \neq \emptyset$

A minimizer of Φ over *S* is a minimizer of $\Phi + \iota_S$. п

If $\exists \rho > 0$ such that **x** is a minimizer of Φ over $\mathcal{B}(\mathbf{x}; \rho)$, then **x** is a local minimizer of Φ .

Theorem - Convexity and local minimizer

Let Φ : R *ⁿ* →]−∞, +∞] be proper convex. Then every local minimizer of Φ is a minimizer.

[Convex minimization problem](#page-65-0) 18/22

Fermat's rule

Theorem - Fermat's rule

Let $\Phi : \mathbb{R}^n \to]-\infty, +\infty]$ be proper. Then

$$
\mathrm{Argmin}(\Phi) = \mathrm{zer}(\partial \Phi) \stackrel{\text{def}}{=} \Big\{ \mathbf{x} \in \mathbb{R}^n \, : \, \mathbf{0} \in \partial \Phi(\mathbf{x}) \Big\}.
$$

Characterization of minimizers

Problem - A non-smooth problem

Let $\mathsf{F}\in\Gamma_0(\mathbb{R}^n)$, $\mathsf{K}:\mathbb{R}^n\to\mathbb{R}^m$ be non-zero bounded linear and $\mathsf{R}\in\Gamma_0(\mathbb{R}^m)$

$$
\min_{\mathbf{x}} \left\{ \Phi(\mathbf{x}) \stackrel{\text{def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \right\},\
$$

Characterization of minimizers

Problem - A non-smooth problem

Let $\mathsf{F}\in\Gamma_0(\mathbb{R}^n)$, $\mathsf{K}:\mathbb{R}^n\to\mathbb{R}^m$ be non-zero bounded linear and $\mathsf{R}\in\Gamma_0(\mathbb{R}^m)$

$$
\min_{\mathbf{x}} \left\{ \Phi(\mathbf{x}) \stackrel{\text{def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \right\},\
$$

In general,

$$
\partial \Phi = \partial (F + R \circ \mathbf{K}) \neq \partial F + \mathbf{K}^* \circ \partial R \circ \mathbf{K}.
$$

 $\sqrt{2}$
Characterization of minimizers

Problem - A non-smooth problem

Let $\mathsf{F}\in\Gamma_0(\mathbb{R}^n)$, $\mathsf{K}:\mathbb{R}^n\to\mathbb{R}^m$ be non-zero bounded linear and $\mathsf{R}\in\Gamma_0(\mathbb{R}^m)$

$$
\min_{\mathbf{x}} \left\{ \Phi(\mathbf{x}) \stackrel{\text{def}}{=} F(\mathbf{x}) + R(\mathbf{K}\mathbf{x}) \right\},\
$$

In general,

$$
\partial \Phi = \partial (F + R \circ \mathbf{K}) \neq \partial F + \mathbf{K}^* \circ \partial R \circ \mathbf{K}.
$$

■ Suppose dom(R)
$$
\cap
$$
 Kdom(F) $\neq \emptyset$,

$$
\partial F + K^* \circ \partial R \circ K \subset \partial (F + R \circ K).
$$

 $\sqrt{2}$

Characterization of minimizers

Proposition - Characterization of minimizers

Let $\mathsf{F}\in\Gamma_0(\R^n)$, $\mathsf{K}:\R^n\to\R^m$ be non-zero bounded and $\mathsf{R}\in\Gamma_0(\R^m).$ Then the following holds $\text{zer}(\partial F + \mathbf{K}^* \circ \partial R \circ \mathbf{K}) \subset \text{Argmin}(\mathbf{F} + \mathbf{R} \circ \mathbf{K}).$

■ Suppose $Argmin(F + R \circ \mathbf{K}) \neq \emptyset$ and

 $\text{ri}(\text{dom}(R)) \cap \text{ri}(\mathbf{K}\text{dom}(F)) \neq \emptyset.$

Then

$$
\mathrm{Argmin}(F + R \circ \mathbf{K}) = \mathrm{zer}(\partial F + \mathbf{K}^* \circ \partial R \circ \mathbf{K}) \neq \emptyset.
$$

Let $x^* \in \text{Argmin}(F + R \circ \mathbf{K})$, the corresponding optimality condition reads $0 \in \partial F(x^*) + K^* \partial R(Kx^*)$.

[Convex minimization problem](#page-65-0) 20/22

Definition - Set-valued operator

An operator $\mathcal A:\R^n\rightrightarrows \R^n$ is set-valued if for every $\bm x\in\R^n$, $\mathcal A(\bm x)$ is a subset of $\R^n.$ Its graph is defined by

$$
\text{gra}(\mathcal{A}) = \Big\{ (\mathbf{x}, \mathbf{u}) \in \mathbb{R}^n \times \mathbb{R}^n \, : \, \mathbf{u} \in \mathcal{A}(\mathbf{x}) \Big\}.
$$

Definition - Set-valued operator

An operator $\mathcal A:\R^n\rightrightarrows \R^n$ is set-valued if for every $\bm x\in\R^n$, $\mathcal A(\bm x)$ is a subset of $\R^n.$ Its graph is defined by

$$
\text{gra}(\mathcal{A}) = \Big\{(\mathbf{x}, \mathbf{u}) \in \mathbb{R}^n \times \mathbb{R}^n \, : \, \mathbf{u} \in \mathcal{A}(\mathbf{x})\Big\}.
$$

Definition - Monotone operator

Let $\mathcal{A}:\mathbb{R}^n \rightrightarrows \mathbb{R}^n.$ Then A is monotone if

$$
\big(\forall (\mathbf{x},\mathbf{u})\in\mathrm{gra}(\mathcal{A})\big)\big((\mathbf{y},\mathbf{v})\in\mathrm{gra}(\mathcal{A})\big)\quad\langle\mathbf{x}-\mathbf{y}\,|\,\mathbf{u}-\mathbf{v}\rangle\geq 0.
$$

It is moreover *maximally monotone* if $\text{gra}(\mathcal{A})$ cannot be contained properly by the graph of another monotone operator β .

Definition - Monotone operator

Let $\mathcal{A}:\mathbb{R}^n \rightrightarrows \mathbb{R}^n.$ Then A is monotone if

$$
\big(\forall (\pmb{x},\pmb{u})\in \mathrm{gra}(\mathcal{A})\big)\big((\pmb{y},\pmb{v})\in \mathrm{gra}(\mathcal{A})\big)\quad \langle \pmb{x}-\pmb{y}\,|\, \pmb{u}-\pmb{v}\rangle\geq 0.
$$

It is moreover *maximally monotone* if $\text{gra}(\mathcal{A})$ cannot be contained properly by the graph of another monotone operator β .

Theorem - Moreau

Let $R \in \Gamma_0(\mathbb{R}^n)$. Then ∂R is maximally monotone.

Definition - Monotone operator

Let $\mathcal{A}:\mathbb{R}^n \rightrightarrows \mathbb{R}^n.$ Then A is monotone if

$$
\big(\forall (\pmb{x},\pmb{u})\in \mathrm{gra}(\mathcal{A})\big)\big((\pmb{y},\pmb{v})\in \mathrm{gra}(\mathcal{A})\big)\quad \langle \pmb{x}-\pmb{y}\,|\, \pmb{u}-\pmb{v}\rangle\geq 0.
$$

It is moreover *maximally monotone* if $\text{gra}(\mathcal{A})$ cannot be contained properly by the graph of another monotone operator β .

Theorem - Moreau

Let $R \in \Gamma_0(\mathbb{R}^n)$. Then ∂R is maximally monotone.

Proposition -

Let $\mathcal{A}:\mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be maximally monotone and $\pmb{x} \in \mathbb{R}^n.$ Then $\mathcal{A}(\pmb{x})$ is *closed and convex*.

References

- Amir Beck: First-order methods in optimization, Vol. 25, SIAM, 2017.
- **Heinz H. Bauschke and Patrick L. Combettes: Convex analysis and monotone operator theory** in Hilbert spaces, Vol. 408. New York: Springer, 2011.