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Vector

LetRn be the n-dimensional real vector space, a column vector ofRn is denoted by aaa ∈ Rn, with

aaa =


a1

a2
...

an

 .

The number ai is called the i’th element/component of the vector aaa.

NB: By default we refer vector as column vector.
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Matrix

A matrix withm rows and n columns is called anm× nmatrix and denoted by

AAA =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...

am,1 am,2 . . . am,n

 ∈ Rm×n.

The identity matrix of size n is a diagonal matrix

IIIdddn =


1

1
. . .

1


n×n

.
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Vector norm

Definition - Vector inner product

Let xxx,yyy ∈ Rn, their inner product or dot product returns a scalar

〈xxx | yyy〉 =
n∑

i=1

xiyi.

Alternative notation

xxxTyyy.

Given any xxx,yyy ∈ Rn, their distance is

||xxx − yyy|| =
√
〈xxx − yyy | xxx − yyy〉.
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Vector norm

Definition - Vector p-norm

Let xxx ∈ Rn be a vector and p ≥ 1, then the p-norm (also called `p-norm) of xxx is defined by

||xxx||p =

(
n∑

i=1

|xi|p
)1/p

.
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Vector norm

Definition - Vector p-norm

Let xxx ∈ Rn be a vector and p ≥ 1, then the p-norm (also called `p-norm) of xxx is defined by

||xxx||p =

(
n∑

i=1

|xi|p
)1/p

.

A norm must satisfies

Positivity: ||xxx||p ≥ 0, ||xxx||p = 0 if and only if xxx = 000.

Homogeneity: ||rxxx||p = |r|||xxx||p, r ∈ R.

Triangle inequality: ||xxx + yyy||p ≤ ||xxx||p + ||yyy||p.
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Vector norm

Example - `2-norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of xxx

||xxx||2 =
√∑n

i=1
|xi|2 =

√
xxxTxxx.

||xxx|| without subscript 2 is also used to denote `2-norm.
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Vector norm

Example - `2-norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of xxx

||xxx||2 =
√∑n

i=1
|xi|2 =

√
xxxTxxx.

||xxx|| without subscript 2 is also used to denote `2-norm.

Example - `1-norm

Let p = 1 we obtain the `1-norm of xxx

||xxx||1 =
∑n

i=1
|xi|.
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Vector norm

Example - `2-norm (Euclidean norm)

Let p = 2 we obtain the Euclidean norm of xxx

||xxx||2 =
√∑n

i=1
|xi|2 =

√
xxxTxxx.

||xxx|| without subscript 2 is also used to denote `2-norm.

Example - `1-norm

Let p = 1 we obtain the `1-norm of xxx

||xxx||1 =
∑n

i=1
|xi|.

Example - `∞-norm

The infinity norm of xxx is defined by

||xxx||∞ = max
i=1,...,n

|xi|.
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Vector norm

Definition - Vector inner product

Let xxx,yyy ∈ Rn, their inner product or dot product returns a scalar

〈xxx | yyy〉 =
n∑

i=1

xiyi.

Theorem - Cauchy-Schwarz inequality

For any two vectors xxx and yyy in Rn, the Cauchy-Schwarz inequality

|〈xxx | yyy〉| ≤ ||xxx||||yyy||
holds. Furthermore, equality holds if and only if xxx = αyyy for some α ∈ R.
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Dual norm

Definition - Dual norm

Let || · || be a norm defined on Rn, the associated dual norm, denoted by || · ||∗ is defined as

||vvv||∗ = sup
{
〈vvv | xxx〉 : ||xxx|| ≤ 1

}
.
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Dual norm

Definition - Dual norm

Let || · || be a norm defined on Rn, the associated dual norm, denoted by || · ||∗ is defined as

||vvv||∗ = sup
{
〈vvv | xxx〉 : ||xxx|| ≤ 1

}
.

𝑣𝑣𝑣
The dual of the Euclidean norm is the Euclidean

norm

sup
{
〈vvv | xxx〉 : ||xxx||2 ≤ 1

}
= ||vvv||2.
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Dual norm

Definition - Dual norm

Let || · || be a norm defined on Rn, the associated dual norm, denoted by || · ||∗ is defined as

||vvv||∗ = sup
{
〈vvv | xxx〉 : ||xxx|| ≤ 1

}
.

𝑣𝑣𝑣
The dual of the `1-norm is the `∞-norm

sup
{
〈vvv | xxx〉 : ||xxx||1 ≤ 1

}
= ||vvv||∞.

Recall that in R2

〈vvv | xxx〉 = v1x1 + v2x2.
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Dual norm

Definition - Dual norm

Let || · || be a norm defined on Rn, the associated dual norm, denoted by || · ||∗ is defined as

||vvv||∗ = sup
{
〈vvv | xxx〉 : ||xxx|| ≤ 1

}
.

𝑣𝑣𝑣
The dual of the `∞-norm is the `1-norm

sup
{
〈vvv | xxx〉 : ||xxx||∞ ≤ 1

}
= ||vvv||1.

Recall that in R2

〈vvv | xxx〉 = v1x1 + v2x2.
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Dual norm

Proposition - Dual norm

Given p, q ≥ 1, `p-norm and `q-norm are dual of each other if

1

p
+

1

q
= 1.
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Dual norm

Proposition - Dual norm

Given p, q ≥ 1, `p-norm and `q-norm are dual of each other if

1

p
+

1

q
= 1.

Theorem - generalized Cauchy-Schwarz inequality

Given any nonzero xxx ∈ Rn and vvv ∈ Rn, there holds

〈vvv | xxx/||xxx||〉 ≤ sup
{
〈vvv | yyy〉 : ||yyy|| ≤ 1

}
= ||vvv||∗ =⇒ 〈vvv | xxx〉 ≤ ||vvv||∗||xxx||

which holds for all vvv and xxx.

The inequality is tight in the sense that, for any xxx there exists a vvv such that the equality

holds, and vice versa.
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Convex sets

Definition, closedness



Convex sets

Definition - Convex set

A subset S of Rn is convex if for any xxx,yyy ∈ S and λ ∈ [0, 1], there holds

λxxx + (1− λ)yyy ∈ S.

λxxx + (1− λ)yyy is called the convex combination of xxx and yyy.
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Convex sets

Definition - Convex set

A subset S of Rn is convex if for any xxx,yyy ∈ S and λ ∈ [0, 1], there holds

λxxx + (1− λ)yyy ∈ S.

λxxx + (1− λ)yyy is called the convex combination of xxx and yyy.

Example - Hyper plane and half space

Given aaa ∈ Rn and b ∈ R,
Hyper plane

H
def
=
{
xxx : aaaTxxx = b

}
.

Half space

H
def
=
{
xxx : aaaTxxx ≤ b

}
.
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Convex sets

Proposition - Some properties

Let S be a convex set, then βS =
{
βxxx : xxx ∈ S

}
is convex.

Let Si, i = 1, 2, ...,m be a family of convex sets, then⋂
i=1,2,...,m

Si

is convex.

Let S1, S2 be two convex sets, then

S1 + S2 and S1 − S2

are convex.
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Open and closed sets

Definition - Interior point

An element xxx ∈ S ⊂ Rn is called an interior point of S if there ∃ε > 0 for which{
yyy : ||yyy − xxx|| ≤ ε

}
⊂ S.

The interior of S, i.e. int(S), denotes the set of all interior points of S.
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Open and closed sets

Definition - Interior point

An element xxx ∈ S ⊂ Rn is called an interior point of S if there ∃ε > 0 for which{
yyy : ||yyy − xxx|| ≤ ε

}
⊂ S.

The interior of S, i.e. int(S), denotes the set of all interior points of S.

A set S is open if int(S) = S, it is closed if

Rn \ S =
{
xxx ∈ Rn : xxx /∈ S

}
is open.
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Open and closed sets

Definition - Interior point

An element xxx ∈ S ⊂ Rn is called an interior point of S if there ∃ε > 0 for which{
yyy : ||yyy − xxx|| ≤ ε

}
⊂ S.

The interior of S, i.e. int(S), denotes the set of all interior points of S.

A set S is open if int(S) = S, it is closed if

Rn \ S =
{
xxx ∈ Rn : xxx /∈ S

}
is open.

The closure and boundary of S are defined as

cl(S) = Rn \ int(Rn \ S) and bd(S) = cl(S) \ int(S).
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Non-expansive operators

Non-expansiveness and fixed-point



Non-expansive operator

Definition - Non-expansive operator

Let S be a non-empty subset of Rn and let F : S → Rn. Then F is non-expansive if it is Lipschitz

continuous with constant 1, i.e.

(∀xxx,yyy ∈ S) ||F(xxx)−F(yyy)|| ≤ ||xxx − yyy||.
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Non-expansive operator

Definition - Non-expansive operator

Let S be a non-empty subset of Rn and let F : S → Rn. Then F is non-expansive if it is Lipschitz

continuous with constant 1, i.e.

(∀xxx,yyy ∈ S) ||F(xxx)−F(yyy)|| ≤ ||xxx − yyy||.

Definition - Firmly non-expansive operator

F is firmly non-expansive if

(∀xxx,yyy ∈ S) ||F(xxx)−F(yyy)||2 + ||(IIIddd−F)(xxx)− (IIIddd−F)(yyy)||2 ≤ ||xxx − yyy||2.

The following are equivalent

F is firmly non-expansive.

IIIddd−F is firmly non-expansive.

2F − IIIddd is non-expansive.
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Non-expansive operator

Definition - Non-expansive operator

Let S be a non-empty subset of Rn and let F : S → Rn. Then F is non-expansive if it is Lipschitz

continuous with constant 1, i.e.

(∀xxx,yyy ∈ S) ||F(xxx)−F(yyy)|| ≤ ||xxx − yyy||.

Definition - Averaged non-expansiveness

Let S be a non-empty subset of Rn and let F : S → Rn. Then F is α-averaged non-expansive if

there exist α ∈]0, 1[ and a non-expansive operatorR such that

F = (1− α)IIIddd+ αR.
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Fixed-points of non-expansive operator

Definition - Non-expansive operator

Let S be a non-empty convex subset of Rn and F : S → Rn be a non-expansive operator, the

set of fixed points of F , denoted by fix(F), is defined by

fix(F)
def
=
{
xxx ∈ S : xxx = F(xxx)

}
.
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Fixed-points of non-expansive operator

Definition - Non-expansive operator

Let S be a non-empty convex subset of Rn and F : S → Rn be a non-expansive operator, the

set of fixed points of F , denoted by fix(F), is defined by

fix(F)
def
=
{
xxx ∈ S : xxx = F(xxx)

}
.

Proposition - Convexity

Let S be a non-empty closed convex subset of Rn and let F : S → Rn be non-expansive, then

the set of fixed points fix(F) is closed and convex.
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Fixed-points of non-expansive operator

Definition - Non-expansive operator

Let S be a non-empty convex subset of Rn and F : S → Rn be a non-expansive operator, the

set of fixed points of F , denoted by fix(F), is defined by

fix(F)
def
=
{
xxx ∈ S : xxx = F(xxx)

}
.

Proposition - Convexity

Let S be a non-empty closed convex subset of Rn and let F : S → Rn be non-expansive, then

the set of fixed points fix(F) is closed and convex.

Theorem - Browder-Göhde-Kirk

Let S be a non-empty bounded closed convex subset of Rn and F : S → S be a non-expansive

operator. Then

fix(F) 6= ∅.
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Fejér monotonicity

Fejér monotonicity, fixed-point iteration



Sequence and limits

A number x? ∈ R is called the limit of the sequence {x(k)}k∈N if for any positive ε > 0 there
exists a number k > 0 such that for all k ≥ k, there holds

|x(k) − x?| < ε.

That is, x(k) ∈ [x? − ε, x? + ε] for all k ≥ k. In this case, we write

x? = lim
k→+∞

x(k)

or

x(k) → x?.

A sequence that has a limit is called a convergent sequence.

Extension to sequences in Rn.
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Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.
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Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.
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Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in R is convergent.
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Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in R is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.
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Sequence and limits

Limit of convergent sequence A convergent sequence has only one limit.

Boundedness and convergence Every convergent sequence is bounded.

Monotonicity and convergence Every monotone bounded sequence in R is convergent.

Subsequence and convergence Any subsequence of a convergent sequence is convergent.

Bolzano-Weierstrass Any bounded sequence has a convergent subsequence.
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Fejér monotonicity

Definition - Fejér monotonicity

Let S be a non-empty subset of Rn and let {xxx(k)}k∈N be a sequence in Rn. Then {xxx(k)}k∈N is

Fejér monotone with respect to S if

(∀xxx ∈ S)(k ∈ N) ||xxx(k+1) − xxx|| ≤ ||xxx(k) − xxx||.
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Fejér monotonicity

Definition - Fejér monotonicity

Let S be a non-empty subset of Rn and let {xxx(k)}k∈N be a sequence in Rn. Then {xxx(k)}k∈N is

Fejér monotone with respect to S if

(∀xxx ∈ S)(k ∈ N) ||xxx(k+1) − xxx|| ≤ ||xxx(k) − xxx||.

Theorem - Fejér monotonicity and convergence

Let S be a nonempty subset of Rn and let {xxx(k)}k∈N be a sequence in Rn. Suppose that

{xxx(k)}k∈N is Fejér monotone with respect to S, then

{xxx(k)}k∈N is bounded. For every xxx ∈ S, {||xxx(k) − xxx||}k∈N converges.

If every sequential cluster point of {xxx(k)}k∈N belongs to S, then

{xxx(k)}k∈N converges to a point in S.
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Fixed-point iteration

Definition - Fixed-point iteration

Let S be a nonempty closed convex subset of Rn, let operator F : S → S be non-expansive such

that fix(F) 6= ∅. Let xxx(0) ∈ S, and set

(∀k ∈ N) xxx(k+1) = F(xxx(k)).

Suppose that xxx(k) −F(xxx(k)) → 000, then

{xxx(k)}k∈N converges to a point in fix(F).

Only non-expansiveness does not guarantee convergence.
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Fixed-point iteration

Theorem - Groetsch

Let S be a nonempty closed convex subset of Rn, let operator F : S → S be non-expansive such

that fix(F) 6= ∅. Let {λk}k∈N be a sequence in [0, 1] such that
∑

k λk(1− λk) = +∞, and let

xxx(0) ∈ S. Set

(∀k ∈ N) xxx(k+1) = xxx(k) + λk

(
F(xxx(k))− xxx(k)

)
.

Then the following hold

{xxx(k)}k∈N is Fejér monotone with respect to fix(F).

{F(xxx(k))− xxx(k)}k∈N converges to 000.

{xxx(k)}k∈N converges to a point in fix(F).

When F is α-averaged non-expansive, then for {λk}k∈N, the condition changes to

λk ∈ [0, 1/α] and ∑
k

λk

(
1

α
− λk

)
= +∞.
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Convex functions

Convex functions



Functions

Let S ⊂ Rn, a function F is a mapping from S to [−∞,+∞], i.e.

F : S → [−∞,+∞].

The domain of F is

dom(F)
def
=
{
xxx ∈ S : F(xxx) < +∞

}
.

The graph of F is

gra(F) def
=
{
(xxx, v) ∈ S× R : F(xxx) = v

}
.

The epi graph of F is

epi(F) def
=
{
(xxx, v) ∈ S× R : F(xxx) ≤ v

}
.

The sub-level set of F is

lev≤v(F)
def
=
{
xxx ∈ S : F(xxx) ≤ v

}
.
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Functions

epi(F )

+∞

gra(F )

dom(F )xxx 1 xxx 2lev≤v(F )
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Closed function

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can

take any real value, as well as the infinite values−∞ and+∞.
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Closed function

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can

take any real value, as well as the infinite values−∞ and+∞.

Example - Indicator function

Let S ⊂ Rn be a set, the indicator function of S is an extended real-valued function given by

ιS(xxx) =

{
0 : xxx ∈ S,

+∞ : xxx /∈ S.
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Closed function

Definition - Extended real line function

An extended real-valued function is a function defined over the entire underlying space that can

take any real value, as well as the infinite values−∞ and+∞.

Example - Indicator function

Let S ⊂ Rn be a set, the indicator function of S is an extended real-valued function given by

ιS(xxx) =

{
0 : xxx ∈ S,

+∞ : xxx /∈ S.

Definition - Closed function

A function F : Rn → [−∞,+∞] is closed if

epi-graph is closed.

sub-level set is closed.
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Convex functions

Definition - Convex function

Let S ⊂ Rn be a non-empty convex set, a function F : S → R is said to be convex if for any

xxx,yyy ∈ S and any λ ∈ (0, 1), there holds

F
(
λxxx + (1− λ)yyy

)
≤ λF(xxx) + (1− λ)F(yyy).

If−F is convex, then F is said to be concave.
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Convex functions

Definition - Convex function

Let S ⊂ Rn be a non-empty convex set, a function F : S → R is said to be convex if for any

xxx,yyy ∈ S and any λ ∈ (0, 1), there holds

F
(
λxxx + (1− λ)yyy

)
≤ λF(xxx) + (1− λ)F(yyy).

If−F is convex, then F is said to be concave.

Example - Examples on R

Absolute value function F(x) = |x| is closed and convex.

The function F(x) = − log(x) is closed and convex.
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Convex functions

Definition - Convex function

Let S ⊂ Rn be a non-empty convex set, a function F : S → R is said to be convex if for any

xxx,yyy ∈ S and any λ ∈ (0, 1), there holds

F
(
λxxx + (1− λ)yyy

)
≤ λF(xxx) + (1− λ)F(yyy).

If−F is convex, then F is said to be concave.

Definition - Strong convexity

Function F : Rn → R is strongly convex if dom(F) is convex, there exists α > 0 such that

F(xxx)− α

2
||xxx||2

is convex.
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Convex functions

Let F : S → R be a convex function and β > 0, then βF is convex.
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Convex functions

Let F : S → R be a convex function and β > 0, then βF is convex.

Let F1, F2 : S → R be convex functions, then F1 + F2 is convex.

Sum of finitely many convex functions
∑k

i=1 Fi...
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Convex functions

Let F : S → R be a convex function and β > 0, then βF is convex.

Let F1, F2 : S → R be convex functions, then F1 + F2 is convex.

Sum of finitely many convex functions
∑k

i=1 Fi...

Let F : S → R be a convex function and (αi)
r
i=1 ∈]0, 1[ such that

∑
i αi = 1, then

F(
∑

i αixxxi) ≤
∑

i αiF(xxxi).
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Convex functions

Let F : S → R be a convex function and β > 0, then βF is convex.

Let F1, F2 : S → R be convex functions, then F1 + F2 is convex.

Sum of finitely many convex functions
∑k

i=1 Fi...

Let F : S → R be a convex function and (αi)
r
i=1 ∈]0, 1[ such that

∑
i αi = 1, then

F(
∑

i αixxxi) ≤
∑

i αiF(xxxi).

Let S ⊂ R be a non-empty convex set and F : S → R a convex function, then F is continuous

along the interior of S.
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Convex functions

Let F : S → R be a convex function and β > 0, then βF is convex.

Let F1, F2 : S → R be convex functions, then F1 + F2 is convex.

Sum of finitely many convex functions
∑k

i=1 Fi...

Let F : S → R be a convex function and (αi)
r
i=1 ∈]0, 1[ such that

∑
i αi = 1, then

F(
∑

i αixxxi) ≤
∑

i αiF(xxxi).

Let S ⊂ R be a non-empty convex set and F : S → R a convex function, then F is continuous

along the interior of S.

Let F : S → R be a convex function and any α ∈ R, then the sub-level set is convex.
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Convex functions

Let F : S → R be a convex function and β > 0, then βF is convex.

Let F1, F2 : S → R be convex functions, then F1 + F2 is convex.

Sum of finitely many convex functions
∑k

i=1 Fi...

Let F : S → R be a convex function and (αi)
r
i=1 ∈]0, 1[ such that

∑
i αi = 1, then

F(
∑

i αixxxi) ≤
∑

i αiF(xxxi).

Let S ⊂ R be a non-empty convex set and F : S → R a convex function, then F is continuous

along the interior of S.

Let F : S → R be a convex function and any α ∈ R, then the sub-level set is convex.

Definition - Γ0(Rn)

The set of all proper, closed and convex functions on Rn is denoted as Γ0(Rn).
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Differentiability

Gradient, sub-differential



Gradient

Definition - Directional derivative

Let S be a nonempty subset of Rn, F : Rn → R, and xxx ∈ dom(F). The directional derivative of F

at xxx in the direction yyy is

∇yyyF(xxx) = lim
α↓0

F(xxx + αyyy)− F(xxx)

α
,

provided that the limits exists.
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Gradient

Definition - Directional derivative

Let S be a nonempty subset of Rn, F : Rn → R, and xxx ∈ dom(F). The directional derivative of F

at xxx in the direction yyy is

∇yyyF(xxx) = lim
α↓0

F(xxx + αyyy)− F(xxx)

α
,

provided that the limits exists.

Definition - Gradient

Let S be a subset of Rn, F : S → R, and suppose that F is differentiable at xxx ∈ S. Then, there

exists a unique vector∇F(xxx) ∈ Rn such that such

(∀yyy ∈ Rn with ||yyy|| = 1) ∇yyyF(xxx) = 〈yyy | ∇F(xxx)〉.
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Gradient

The (Gâteaux) gradient of F at xxx ∈ S ⊂ dom(F) is an n-dimensional vector

∇F(xxx) =


∂F(xxx)
∂x1

∂F(xxx)
∂x2
...

∂F(xxx)
∂xn

 ∈ Rn,

where the partial derivative is defined by

∂F(xxx)

∂xi
= lim

α↓0

F(xxx + αeeei)− F(xxx)

α
.
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Gradient

The (Gâteaux) gradient of F at xxx ∈ S ⊂ dom(F) is an n-dimensional vector

∇F(xxx) =


∂F(xxx)
∂x1

∂F(xxx)
∂x2
...

∂F(xxx)
∂xn

 ∈ Rn,

where the partial derivative is defined by

∂F(xxx)

∂xi
= lim

α↓0

F(xxx + αeeei)− F(xxx)

α
.

Proposition - Characterization of convexity

Let S ⊂ Rn be an open set and F : S → R be convex and smooth differentiable, then

F(yyy) ≥ F(xxx) + 〈∇F(xxx) | yyy − xxx〉.
〈yyy − xxx | ∇F(yyy)−∇F(xxx)〉 ≥ 0.

Differentiability 16/22



Subdifferentiability

Definition - Subdifferential

Let R : Rn →]−∞,+∞] be proper convex. The subdifferential of R at is the set-valued

operator

∂R : Rn ⇒ Rn : xxx →
{
vvv ∈ Rn : (∀yyy ∈ Rn) 〈yyy − xxx | vvv〉+ R(xxx) ≤ R(yyy)

}
.

Let xxx ∈ Rn, then R is subdifferentiable at xxx if ∂R(xxx) 6= ∅.
The elements of ∂R(xxx) are the subgradients of R at xxx.
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Let R : Rn →]−∞,+∞] be proper convex. The subdifferential of R at is the set-valued

operator

∂R : Rn ⇒ Rn : xxx →
{
vvv ∈ Rn : (∀yyy ∈ Rn) 〈yyy − xxx | vvv〉+ R(xxx) ≤ R(yyy)

}
.

Let xxx ∈ Rn, then R is subdifferentiable at xxx if ∂R(xxx) 6= ∅.
The elements of ∂R(xxx) are the subgradients of R at xxx.

Example - Indicator function

Let S be a non-empty convex subset of Rn. Then

∂ιS(xxx) = NS(xxx) =

{{
vvv ∈ Rn : sup〈vvv | S− xxx〉 ≤ 0

}
: xxx ∈ S,

∅ : o.w.
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Subdifferentiability

Definition - Subdifferential

Let R : Rn →]−∞,+∞] be proper convex. The subdifferential of R at is the set-valued

operator

∂R : Rn ⇒ Rn : xxx →
{
vvv ∈ Rn : (∀yyy ∈ Rn) 〈yyy − xxx | vvv〉+ R(xxx) ≤ R(yyy)

}
.

Let xxx ∈ Rn, then R is subdifferentiable at xxx if ∂R(xxx) 6= ∅.
The elements of ∂R(xxx) are the subgradients of R at xxx.

Proposition - Convexity of subdifferential

Let R : Rn →]−∞,+∞] be proper convex and xxx ∈ dom(R). Then

dom(∂R) ⊂ dom(R).

∂R(xxx) is closed and convex.
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Convex minimization problem

Minimizers, and characterizations



Global and local minimum

Definition - Infimum and minimum

Let Φ : S → [−∞,+∞] and let C be a subset of S.

The infimum of Φ over C is inf Φ(C); it is also denoted by

inf
xxx∈C

Φ(xxx).

Φ achieves its infimum over C if there exists yyy ∈ C such that

Φ(yyy) = inf Φ(C).

In this case, we write

Φ(yyy) = min Φ(C) or Φ(yyy) = min
xxx∈C

Φ(xxx)

and call minΦ(C) the minimum of Φ over C.
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Global and local minimum

Definition - Global and local minimum

Let Φ : Rn →]−∞,+∞] be proper, and let xxx ∈ Rn

xxx is a (global) minimizer of Φ if

Φ(xxx) = inf Φ(Rn)

and Φ(xxx) = min Φ(Rn) ∈ R.
The set of minimizers of Φ is denoted by Argmin(Φ).
If Argmin(Φ) is a singleton, its unique element is denoted by argmin

xxx∈Rn
Φ(xxx).

Let S be a subset of Rn such that S ∩ dom(Φ) 6= ∅
A minimizer of Φ over S is a minimizer of Φ+ ιS.

If ∃ρ > 0 such that xxx is a minimizer of Φ over B(xxx; ρ), then xxx is a local minimizer of Φ.
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Global and local minimum

Definition - Global and local minimum

Let Φ : Rn →]−∞,+∞] be proper, and let xxx ∈ Rn

xxx is a (global) minimizer of Φ if

Φ(xxx) = inf Φ(Rn)

and Φ(xxx) = min Φ(Rn) ∈ R.
The set of minimizers of Φ is denoted by Argmin(Φ).
If Argmin(Φ) is a singleton, its unique element is denoted by argmin

xxx∈Rn
Φ(xxx).

Let S be a subset of Rn such that S ∩ dom(Φ) 6= ∅
A minimizer of Φ over S is a minimizer of Φ+ ιS.

If ∃ρ > 0 such that xxx is a minimizer of Φ over B(xxx; ρ), then xxx is a local minimizer of Φ.

Theorem - Convexity and local minimizer

Let Φ : Rn →]−∞,+∞] be proper convex. Then every local minimizer of Φ is a minimizer.
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Fermat’s rule

Theorem - Fermat’s rule

Let Φ : Rn →]−∞,+∞] be proper. Then

Argmin(Φ) = zer(∂Φ) def
=
{
xxx ∈ Rn : 000 ∈ ∂Φ(xxx)

}
.
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Characterization of minimizers

Problem - A non-smooth problem

Let F ∈ Γ0(Rn), KKK : Rn → Rm be non-zero bounded linear and R ∈ Γ0(Rm)

min
xxx

{
Φ(xxx)

def
= F(xxx) + R(KKKxxx)

}
,
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{
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def
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In general,

∂Φ = ∂
(
F + R ◦ KKK

)
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Problem - A non-smooth problem

Let F ∈ Γ0(Rn), KKK : Rn → Rm be non-zero bounded linear and R ∈ Γ0(Rm)

min
xxx

{
Φ(xxx)

def
= F(xxx) + R(KKKxxx)

}
,

In general,

∂Φ = ∂
(
F + R ◦ KKK

)
6= ∂F + KKK∗ ◦ ∂R ◦ KKK.

Suppose dom(R) ∩ KKKdom(F) 6= ∅,
∂F + KKK∗ ◦ ∂R ◦ KKK ⊂ ∂

(
F + R ◦ KKK

)
.
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Characterization of minimizers

Proposition - Characterization of minimizers

Let F ∈ Γ0(Rn), KKK : Rn → Rm be non-zero bounded and R ∈ Γ0(Rm). Then the following holds

zer
(
∂F + KKK∗ ◦ ∂R ◦ KKK

)
⊂ Argmin(F + R ◦ KKK).

Suppose Argmin(F + R ◦ KKK) 6= ∅ and
ri
(
dom(R)

)
∩ ri
(
KKKdom(F)

)
6= ∅.

Then

Argmin(F + R ◦ KKK) = zer
(
∂F + KKK∗ ◦ ∂R ◦ KKK

)
6= ∅.

Let xxx? ∈ Argmin(F + R ◦ KKK), the corresponding optimality condition reads

000 ∈ ∂F(xxx?) + KKK∗∂R(KKKxxx?).
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Monotone operators

Definition - Set-valued operator

An operatorA : Rn ⇒ Rn is set-valued if for every xxx ∈ Rn,A(xxx) is a subset of Rn. Its graph is

defined by

gra(A) =
{
(xxx,uuu) ∈ Rn × Rn : uuu ∈ A(xxx)

}
.
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An operatorA : Rn ⇒ Rn is set-valued if for every xxx ∈ Rn,A(xxx) is a subset of Rn. Its graph is

defined by

gra(A) =
{
(xxx,uuu) ∈ Rn × Rn : uuu ∈ A(xxx)

}
.

Definition - Monotone operator

LetA : Rn ⇒ Rn. Then A is monotone if(
∀(xxx,uuu) ∈ gra(A)

)(
(yyy,vvv) ∈ gra(A)

)
〈xxx − yyy | uuu− vvv〉 ≥ 0.

It is moreovermaximally monotone if gra(A) cannot be contained properly by the graph of

another monotone operator B.
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another monotone operator B.

Theorem - Moreau

Let R ∈ Γ0(Rn). Then ∂R is maximally monotone.
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Monotone operators

Definition - Monotone operator

LetA : Rn ⇒ Rn. Then A is monotone if(
∀(xxx,uuu) ∈ gra(A)

)(
(yyy,vvv) ∈ gra(A)

)
〈xxx − yyy | uuu− vvv〉 ≥ 0.

It is moreovermaximally monotone if gra(A) cannot be contained properly by the graph of

another monotone operator B.

Theorem - Moreau

Let R ∈ Γ0(Rn). Then ∂R is maximally monotone.

Proposition -

LetA : Rn ⇒ Rn be maximally monotone and xxx ∈ Rn. ThenA(xxx) is closed and convex.
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